
 
 
 
 
 
 
 
 
 
 
 

RECURSION – II 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
In this section we shall study some more issues 
related to recursion.  
 
We shall study  
the development of algorithm of Towers of Hanoi 
problem,  
 
trace a recursive function  
 
and finally try to improve upon the time complexity 
of the Fibonacci sequence generation. 
 
 
 
 
 
 
TOWERS  OF  HANOI  
 
We have seen that the Tower of  Honoi problem for 3 
disks can be worked as follows: 
 
move tower of size 2 from start to temp 
move a single disk from start to finish 
move  tower of size 2 from temp to finish 
 



If there were 2 disks, then the movement sequence 
would be as follows: 
 
move tower of size 1 from start to temp 
move a single disk from start to finish 
move  tower of size 1 from temp to finish 
 
 
If there were 4 disks, then the movement sequence 
would be as follows; 
 
move tower of size 3 from start to temp 
move a single disk from start to finish 
move  tower of size 3 from temp to finish 
 
In every case, we initially simplify the problem to 
move tower of size one less than the given size to the 
temporary needle.  
 
Then the last disk is moved to the finish needle. 
 
Finally, we attempt to solve the problem of moving 
the tower on temporary needle ( of size one less than 
given size) to the finish needle. 
 
 Thus the general case for n disks can be written 
down as ; 
 



move tower of size n-1 from start to temp 
move a single disk from start to finish 
move  tower of size n-1 from temp to finish 
 

 
 
 
TRACING A RECURSIVE  FUNCTION 
 
 

We have traced earlier the factorial recursive function 
for n=4.  
Here we study another recursive function, and trace it 
when it is called as  f(1,3): 
 

int  f (int x, int y) 
{ 
if (x == 0  && y >= 0) 
        return y + 1; 
else if (x > 0 && y == 0) 
        return (f(x−1,1)); 
else if (x > 0 && y > 0) 
        return (f(x−1, f(x, y−1))); 
} 
 
Trace for call f(1,3) 
 
x  
  
= f(1, 3)         



 
= f(0, f(1, 2))         
 
= f(0, f(0, f(1, 1)))     
 
= f(0, f(0, f(0, f(1,0))))     
 
= f(0, f(0, f(0, f(0,1))))         
 
= f(0, f(0, f(0, 2)))         
 
= f(0, f(0, 3))         
 
= f(0,4)    
 
= 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A BETTER ALGORITHM FOR 
GENERATION OF  Fibonacci Sequence: 
 
We have seen that the  algorithm proposed earlier had 
an exponential time complexity. However, if we 
exploit the structure of the problem we can 
considerably reduce the time , while the solution still 
remains recursive. 
 
 
In fact a large number of sequences can be generated 
based on choice of the first two numbers. 
 
•If you were to select the first two terms as 2 and 4 
the sequence you would generate would be: 
 
2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466,… 
 
 
•The general class of sequences which follow this 
pattern are called additive sequences.  
 
•Using the concept of an additive sequence  it is  
possible  
to convert the problem of finding the nth term in the 
Fibonacci sequence  
into the more general problem of  



finding the nth term in an additive sequence whose 
first two terms are t0 and t1 . 
 
•An additive sequence function requires three 
arguments: 
 the number of terms of interest in the series, and the 
first two terms in the series. 
 
 
•The C prototype for this function : 
 
 
 int AdditiveSequence(int n, int t0, int t1); 
 
 
•Given such a function,  the Fibonacci series can be 
generated  as shown below: 
 
 
int fib(int n) 
{ 
    return (AdditiveSeq(n, 0, 1)); 
} 
 
•The body consists of a single line of code  
that does nothing but call another function,  
passing along the additional arguments.  



 
•Functions of this sort, are called wrapper functions.  
Wrapper functions are very common in recursive 
programming 
 
•A implementation in C of the AdditiveSequence is 
given below: 
 
int AdditiveSeq(intn, int t0,int 
t1)) 
{ 
    if (n == 0)   return (t0); 
    if (n == 1)   return (t1); 
  return AdditiveSeq(n-1,1,t0+t1)); 
} 
• 
 
•Using this AdditiveSeq function, let’s determine the 
value of Fibonacci(6). 
 
 fib(6) 
     = AdditiveSeq (6, 0, 1) 
               = AdditiveSeq (5, 1, 1) 
                   = AdditiveSeq (4, 1, 2) 
                       = AdditiveSeq (3, 2, 3) 
                           = AdditiveSeq (2, 3, 5) 
                               = AdditiveSeq (1, 5, 8) 
                                   = 8 



•Notice how much more efficiently the recursion 
occurs using the AdditiveSeq function.   
 
The table on the next page illustrates this further.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
;;; 

New Function Original Function 

41 

36 

31 

26 

21 

16 

11 

6 

5 

4 

3 

2 

29,860,703 35 

2,692,573 30 

331,160,281 

242,785 

21,891 

1,973 

177 

15 

9 

5 

3 

1 

Total Number of Calls 

4 

3 

40 

25 

20 

15 

10 

5 

2 

1 

Series Size 


