
Algorithms Part 1

· What is an algorithm?

· How does an everyday algorithm differ from a computer algorithm? How are they similar?

· How do you describe an algorithm?

· What makes a “good” algorithm?

· Levels of abstraction, modularization.

· Steps in the development of algorithms.

· Algorithmic components: data structures, data manipulation instructions, conditional expressions, control structures, modules.

· Basic tools for building algorithms: data and operators.

· Rules for identifiers in C.

· Declaration of constants.

· Know how to declare integers, doubles, and characters as well as the standard operations used to manipulate these data types.

· The assignment statement in C. Know how it works and how to use it.

· Basic input and output in C: scanf and printf.

· Algorithmic decisions. The if and if-else statements in C.

· Relational operators: <, >=, ==, <=, <, !=

· Boolean operators: && (and), || (or), as well as ! (not). Know their truth tables.

· Be able to evaluate arithmetic and Boolean expressions using the precedence of the operators.

· Nested conditional statements.

· Nested if statements.

· Nested if-else statements.

· Be able to trace through code using these types of statements as well as being able to write code using them.

Algorithms Part 2
· Basic tools for building algorithms: data and operators.

· Rules for identifiers in C.

· Declaration of constants.

· Know how to declare integers, doubles, and characters as well as the standard operations used to manipulate these data types.

· The assignment statement in C. Know how it works and how to use it.

· Basic input and output in C: scanf and printf.

· Algorithmic decisions. The if and if-else statements in C.

· Relational operators: <, >=, ==, <=, <, !=

· Boolean operators: && (and), || (or), as well as ! (not). Know their truth tables.

· Be able to evaluate arithmetic and Boolean expressions using the precedence of the operators.

Algorithmic Complexity
· Asymptotic notation. What’s considered and what isn’t.

· Big-Oh notation.

· Omega notation.

· Theta notation.

· Little-Oh notation.

· Run-time approximations. (See Practice Problems #1 & Solutions.)

· Summations. Know the following:

[image: image1.wmf]å

å

å

å

=

=

=

=

+

=

=

+

=

+

=

n

1

i

n

0

i

n

1

i

n

0

i

1

n

1

n

1

2

)

1

n

(

n

i

2

)

1

n

(

n

i

Number Systems
· Know number systems, binary, octal, decimal, and hexadecimal.

· Know conversions between any of these number systems.

· Practice Problems #2 & Solutions.

Algorithms Part 3
· Nested conditional statements.

· Nested if statements.

· Nested if-else statements.

· Be able to trace through code using these types of statements as well as being able to write code using them.

Control Structures
· Sequence structures. Built into the C languages, execution is by default sequential.

· Selection structures: if and if-else statements (we haven’t covered switch statements yet).

· Repetition structures: while, for, and do-while statements in C.

· Know which are top-tested loops and which are bottom-tested loops and what the difference is.

· The for loop is a counted loop, know its structure which is somewhat different that either the while or the do-while loops.

· Nested control structures, i.e., nested loops.

Functions and Modularity
· Know what modularity is and why it is a “good” thing from an algorithmic point of view.

· Hierarchy of abstraction.

· Interfaces. What are they and what do they do?

· Parameters. What is a parameter and what is it used for?

· Call by Value (also referred to as Pass by Value).

· Call by Reference (also referred to as Pass by Reference).

· Functions in C. Two types, those that return a value and void functions which do not return a value.

· Function prototype. What is it and how is it used?

· The structure of a C program.

· Pointers in C. How to declare them and use them.

· Operators * and &.

Recursion
· Be able to trace the execution of a recursive function.

· Be able to write, in C, a simple recursive function.

· Be able to identify the stopping case (base case) for a recursive function.

· Be able to produce an induction proof for some conjecture involving the set of integers. See practice problem set on induction proofs.

Arrays
· Know how to define and declare arrays of 1 and 2 dimensions.

· Know how to access elements in arrays.

· Remember that C begins indexing arrays with 0 not 1. So an array declared as: int alpha [4]; contains locations alpha[0], alpha[1], alpha[2], and alpha[3].

· Passing arrays as parameters to functions.

Searching and Sorting
· This set of notes begins with some code tracing examples. Be sure you practice tracing through the execution of code.

· Introduction to Big-Oh notation.

· Know Big-Oh bounds for sequential and binary searches.

· Be familiar with how the binary search algorithm works. Given the binary search algorithm, be sure that you can identify the elements of an array that would be examined when searching for some specific value in the array.

· Know how the selection sort works.

· Know how the bubble sort works. (Algorithm)

· Know how the insertion sort works.

· Know how the mergesort works. (recursive) (Algorithm)

· Know how the quicksort works. (recursive)

Records
· Be able to correctly define a struct (record) in C.

· Be able to use and correctly access components of a struct.

Data Structures and Linked Lists
· Static versus dynamic structures.

· Self-referential structures.

· Dynamic memory allocation in C: malloc, free, and sizeof.

· The linked list data structure. Insertion and deletion techniques.

Stacks
· Know what a stack is and the access policy (LIFO – Last In First Out) which controls access to the stack.

· Know the two basic operations which are defined for a stack: push (insert) and pop (delete).

· Applications for stacks. Printing a string of characters in reverse order, converting infix expressions into postfix expressions.

Queues and Binary Trees

· Know what a queue is and the access policy (FIFO – First In First Out) which controls access to the queue.

· Know the two basic operations which are defined for a queue: enqueue (insert) and dequeue (delete). Enqueue at the rear of a queue, dequeue from the front of a queue

· Know how a binary tree is recursively defined. Consists of a (possibly empty) root node which has either 0, 1, or 2 children (successor nodes in a hierarchical relationship with the root).

· Know the recursive traversal algorithms for traversing a binary tree. Preorder: visit root, visit left subtree, visit right subtree. Inorder: visit left subtree, visit root, visit right subtree. Postorder: visit left subtree, visit right subtree, visit root.

Binary Search Trees
· Know how the structure of a binary search tree (BST) is defined. Every node in the left subtree has a value smaller than the value of the root and every node in the right subtree has a value larger than the value of the root.

· Know how to insert a new node into a BST.

· Know the three basic cases for deleting a node from a BST.

AVL Trees
· Know what an AVL tree is and how it is defined.

· Why do they exist? What benefits do they provide?

· Balance factors. What are they and how do you compute them?

· Rotations. Know left and right single rotations as well as double rotations.

Computational Complexity
· Know how Big-Oh notation works.

· Be familiar with average and worst case performance (in terms of Big-Oh) for linear search, binary search, tree traversal algorithms, sorting algorithms, stack and queue operations, etc.

· Be able to solve Big-Oh and summation (step count) problems.

Additional Material

· Binary numbers. Powers of 2. You should know these through at least 210.

· Binary to decimal conversions. Know how to do this.

· Decimal to binary conversions. Know how to do this.

· Summations. Know the following:

[image: image2.wmf]å

å

å

å

=

=

=

=

+

=

=

+

=

+

=

n

1

i

n

0

i

n

1

i

n

0

i

1

n

1

n

1

2

)

1

n

(

n

i

2

)

1

n

(

n

i

· Tracing function and loop execution.

· Introduction to recursive functions.

· Introduction to order analysis.

· Estimating algorithm running times.

· Summations which begin with values other than 0 or 1.

Specifics
· Part of the test will be testing your ability to write functions and incorporate them into programs.

· Part of the test will be testing your ability to trace through programs or program segments, including programs with functions that use pass by value and/or pass by reference parameters.

· Be very familiar with pointers so that you can read, write, and trace code which makes use of them.

· Material covered on the test comes from the lecture notes and the recitation lab notes. No material will appear on the test which appears only in the textbook.

· Don’t forget to put comments in any code that you write on the test. This is just as important on this code as it is on code that you actually plan to execute.

Review/Sample Questions
1. Given the following stack operations, show the contents of the stack after the last instruction has been executed.

1. push(40)

2. push(10)

3. push(10)

4. push(pop() + pop())

5. push(5)

6. push(20)

7. push(pop() / pop())

2. For the binary tree shown below, produce preorder, inorder and postorder traversals of the tree.

3. Is the binary tree from question #2 a binary search tree?

4. What is the value of
[image: image3.wmf]å

=

-

26

14

i

)

3

i

2

(

5. Given the graph shown below, use Dijkstra’s label-setting algorithm to determine the shortest path between nodes a and f.

10

4

3

8
 5

3
 7

4

6

7

 6. Consider the following tree:

(a) Produce the balance factor for every node in the tree?

(b) Is the tree an AVL-tree according to the definition? Why or why not?

(c) Assume that the node with value 54 (the yellow node) was just inserted into the tree. Was the tree an AVL-tree before this insert occurred?

(d) Re-balance the tree that resulted after the insertion of the node with value 54 so that once again the tree is an AVL-tree.

Answers To Review Questions
1. Stack problem.

1. push(40)

2. push(10)

3. push(10)

4. push(pop() + pop())

5. push(5)

6. push(20)

7. push(pop() / pop())

2. Preorder traversal:

24 36 28 19 56 57 20 30 4 18 39 74 58 7 12

Inorder traversal:

19 56 20 57 28 34 36 24 18 4 7 58 12 74 39

 Postorder traversal:

20 57 56 19 34 28 36 18 7 12 58 74 39 4 24

3. No! For instance, 36 is in left subtree of 24 (root) and 4 is in right subtree.

4.
[image: image4.wmf]å

=

-

26

14

i

)

3

i

2

(

 =
[image: image5.wmf]å

å

å

å

å

å

=

=

=

=

=

=

÷

÷

ø

ö

ç

ç

è

æ

-

-

÷

÷

ø

ö

ç

ç

è

æ

-

=

-

26

14

i

26

14

i

26

1

i

13

1

i

16

1

i

13

1

i

1

3

1

3

i

2

i

2

3

i

2

=
[image: image6.wmf]å

å

å

å

=

=

=

=

+

-

-

=

+

-

-

26

1

i

26

1

i

13

1

i

13

1

i

)

13

(

3

)

26

(

3

2

)

14

)(

13

(

2

2

)

27

)(

26

(

2

1

3

1

3

i

2

i

2

=
[image: image7.wmf]481

39

78

520

39

78

182

702

=

+

-

=

+

-

-

5.

Initial Table: Table represents the current distance to a vertex at each iteration

	iteration
	initial
	1
	2
	3
	4
	5
	6

	active vertex
	(
	
	
	
	
	
	

	a
	0
	
	
	
	
	
	

	b
	(
	
	
	
	
	
	

	c
	(
	
	
	
	
	
	

	d
	(
	
	
	
	
	
	

	e
	(
	
	
	
	
	
	

	f
	(
	
	
	
	
	
	

tobechecked = {b, c, d, e, f} initial node a is removed from the set

First Iteration:

	iteration
	initial
	1
	2
	3
	4
	5
	6

	active vertex
	(
	a
	
	
	
	
	

	a
	0
	
	
	
	
	
	

	b
	(
	3
	
	
	
	
	

	c
	(
	4
	
	
	
	
	

	d
	(
	8
	
	
	
	
	

	e
	(
	(
	
	
	
	
	

	f
	(
	(
	
	
	
	
	

tobechecked = {b, c, d, e, f}

currDist(b) = currDist(a) + weight(edge(ab)) = 3

currDist(c) = currDist(a) + weight(edge(ac)) = 4

currDist(d) = currDist(d) + weight(edge(ad)) = 8

Second Iteration:

	iteration
	initial
	1
	2
	3
	4
	5
	6

	active vertex
	(
	a
	b
	
	
	
	

	a
	0
	
	
	
	
	
	

	b
	(
	3
	
	
	
	
	

	c
	(
	4
	4
	
	
	
	

	d
	(
	8
	8
	
	
	
	

	e
	(
	(
	(
	
	
	
	

	f
	(
	(
	10
	
	
	
	

tobechecked = {c, d, e, f}

Vertex b is selected as the active vertex since it has minimum distance at this point

currDist(f) = currDist(b) + weight(edge(bf)) = 10

Third Iteration:

	
iteration
	initial
	1
	2
	3
	4
	5
	6

	active vertex
	(
	a
	b
	c
	
	
	

	a
	0
	
	
	
	
	
	

	b
	(
	3
	
	
	
	
	

	c
	(
	4
	4
	
	
	
	

	d
	(
	8
	8
	8
	
	
	

	e
	(
	(
	(
	14
	
	
	

	f
	(
	(
	10
	7
	
	
	

tobechecked = {d, e, f}

Vertex c is selected as the active vertex since it currently has minimal distance.

currDist(e) = currDist(c) + weight(edge(ce)) = 14

currDist(f) = currDist(c) + weight(edge(cf)) = 7 (change since less than current value)

Fourth Iteration:
	iteration
	initial
	1
	2
	3
	4
	5
	6

	active vertex
	(
	a
	b
	c
	f
	
	

	a
	0
	
	
	
	
	
	

	b
	(
	3
	
	
	
	
	

	c
	(
	4
	4
	
	
	
	

	d
	(
	8
	8
	8
	8
	
	

	e
	(
	(
	(
	14
	14
	
	

	f
	(
	(
	10
	7
	
	
	

The active vertex is selected to be d.

currDist(d) = currDist(f) + weight(edge(fe)) = 14 (no change = current value)

tobechecked = {d, e}

Fifth Iteration:

	iteration
	initial
	1
	2
	3
	4
	5
	6

	active vertex
	(
	a
	b
	c
	f
	d
	

	a
	0
	
	
	
	
	
	

	b
	(
	3
	
	
	
	
	

	c
	(
	4
	4
	
	
	
	

	d
	(
	8
	8
	8
	8
	
	

	e
	(
	(
	(
	14
	14
	14
	

	f
	(
	(
	10
	7
	
	
	

The active vertex is selected to be: d No changes possible

tobechecked = {e}

Sixth (final) Iteration:

	iteration
	initial
	1
	2
	3
	4
	5
	6

	active vertex
	(
	a
	b
	c
	f
	d
	e

	a
	0
	
	
	
	
	
	

	b
	(
	3
	
	
	
	
	

	c
	(
	4
	4
	
	
	
	

	d
	(
	8
	8
	8
	8
	
	

	e
	(
	(
	(
	14
	14
	14
	

	f
	(
	(
	10
	7
	
	
	

The active vertex is selected to be e (the only one left in the tobechecked set)

no changes are made as vertex e has no emanating edges

The final table now holds the minimum distance from node a to every other node in the graph. Thus the minimum distances for this graph are:

The shortest path from node a to node b is: 3

The shortest path from node a to node c is: 4

The shortest path from node a to node d is: 8

The shortest path from node a to node e is: 14

The shortest path from node a to node f is: 7

6. (a) Same tree showing balance factors instead of data values for each node.

(b) Is the tree an AVL-tree according to the definition? Why or why not?

No, the root node has a balance factor of +2 and an AVL tree must have all nodes with balance factors of –1, 0, or +1.

(c) Assume that the node with value 54 (the yellow node) was just inserted into the tree. Was the tree an AVL-tree before this insert occurred?

Yes, this is illustrated in the tree below which is the tree above before the insertion of the node containing value 54.

(d) Re-balance the tree that resulted after the insertion of the node with value 54 so that once again the tree is an AVL-tree.

The following trees show the re-balancing that will occur which results in the final AVL-tree. The rotation occurs about the root node of the tree since this is the node with a +2 balance factor

Tree after insertion of 54 – nodes displayed as value/balance factor

The root is the first un-balanced node and since its balance factor is positive (+2), this indicates that the problem is in its right sub-tree so a left-rotation will occur. This is shown below:

Step by step: 34 and 44 interchange (child becomes parent), but since 44 is a right child of 34, 34 will become a left child of 44 when 44 becomes the parent. 24 will remain as the left child of 24. 42 which was the left child of 44 becomes the right child of 34. 64 remains as the right child of 44.

-1

0

+1

0

+2

54

64

42

44

24

34

F

E

D

B

C

A

12

7

58

74

5

40

top

20

20

5

40

top

20

39

18

34

20

57

56

19

28

4

36

COP 3502H – Final Exam Review Notes – Spring 2003

5

40

top

20

40

top

20

10

40

top

10

24

40

top

10

top

40

0

+1

0

0

0

0

34/+2

24/0

44/+1

42/0

64/-1

54/0

44/0

64/-1

34/0

54/0

42/0

24/0

PAGE
15
Final Exam Review Notes -

_1089019785.unknown

_1089020439.unknown

_1089020717.unknown

_1089020894.unknown

_1089019836.unknown

_1084783835.unknown

