
Functions and Modularity – Day 10 notes
· More details on Pass by Value.

· More details on Pass by Reference.

· Pointers in C. How to declare them and use them.

· Operators * and &.

Searching and Sorting – Day 13 notes
· This set of notes begins with some code tracing examples. Be sure you practice tracing through the execution of code.

· Introduction to Big-Oh notation.

· Know Big-Oh bounds for sequential and binary searches.

· Be familiar with how the binary search algorithm works. Given the binary search algorithm, be sure that you can identify the elements of an array that would be examined when searching for some specific value in the array.

· Know how the selection sort works.

· Know how the bubble sort works. (Algorithm)

· Know how the insertion sort works.

· Know how the mergesort works. (recursive) (Algorithm)

· Know how the quicksort works. (recursive)

Recursion – Day 14 notes
· Be able to trace the execution of a recursive function.

· Be able to write, in C, a simple recursive function.

· Be able to identify the stopping case (base case) for a recursive function.

· Be able to produce an induction proof for some conjecture involving the set of integers. See practice problem set on induction proofs.

Data Structures – Days 15, 16, 17, 18, 19, and 20 notes
· Linked lists: single-link, double-link, circular-link variations.

· Advanced list structures: skip lists and self-organizing lists.

· Stacks and queues. Know the trade-offs of static versus dynamic implementations. Know access policies. Be familiar with the basic operations on these data structures.

· Binary tress. Know basic terminology. Be able to follow recursive algorithms that manipulate and/or traverse a binary tree. Know the ordering properties for a binary search tree. Be able to correctly insert and delete nodes from a BST.

Additional Material

· Tracing function and loop execution, both iterative and recursive algorithms.

· Introduction to recursive functions.

· Introduction to order analysis. (from test #1)

· Estimating algorithm running times. (from test #1)

· Summations. Don’t forget the following closed forms:

[image: image1.wmf]å

å

å

å

=

=

=

=

+

=

=

+

=

+

=

n

1

i

n

0

i

n

1

i

n

0

i

1

n

1

n

1

2

)

1

n

(

n

i

2

)

1

n

(

n

i

Specifics
· Part of the test will be testing your ability to write functions and incorporate them into programs.

· Part of the test will be testing your ability to trace through programs or program segments, including programs with functions that use pass by value and/or pass by reference parameters.

· Be very familiar with pointers so that you can read, write, and trace code which makes use of them.

· Material covered on the test comes from the lecture notes and the recitation lab notes. No material will appear on the test which appears only in the textbook.

· Don’t forget to put comments in any code that you write on the test. This is just as important on this code as it is on code that you actually plan to execute.

Review/Sample Questions
1. What is the output of the following program? What did this program do, be specific.

2. Define a struct that contains the following information about students: student name, student id, course_number, and grade. (Assume each student is only in one class.) Use this struct to write a function that counts the number of students who made an “A” for a course grade.

3. Draw a diagram of what is in memory after each of the declaration and statements in the following code has been executed.

4. Given the following unsorted array, show the contents of the array after each “pass” of the bubble sort.

	14
	10
	5
	3
	7
	9
	12
	16
	4
	8

5. Repeat Problem #4, but this time use an insertion sort. Stop if the array becomes sorted before the iteration would end.

6. Repeat Problem #4, but this time use a selection sort. Stop if the array becomes sorted before the iteration would end.

7. Given the sorted array shown below, list every element which is “examined” by a binary search when the search element is 26.

	2
	4
	5
	8
	10
	13
	14
	17
	22
	26
	34
	48

8. Redo problem #7, but this time the search element is 3.

9. An algorithm known to be O(n3) is used by a friend of yours to solve a problem instance of size n = 10 and they tell you that it took 250 seconds to solve their problem. If you use the same algorithm to solve a problem instance of size n = 20, will the algorithm require more than 10 minutes to solve the problem?

10. Given the following code segment; (a) what is the Big-Oh order of this code and (b) what is the value of x in terms of n after this code is executed?

 x = 0;

for (i = 1; i <= (4*n); i++)

 for (j = 1; j <= (2*n); j++)

x = x + i;

Answers to Review Questions
1. Since the input string is embedded in the program as:

 “This is a sample problem for test #2”

 This program will reverse the characters in the string beginning at position 4

 and ending with position 16. This produces the string:

 “This elpmas a si problem for test #2”.

2.

3. First line simply declares three variables:

c1

c2

temp

Second line declares two pointers p and q which refer to the locations of c1 and c2 respectively.

c1

c2

temp

Third line assigns to temp the value at the location referenced by *p, which is ‘A’.

c1

c2

temp

Fourth line assigns to location referenced by *p the value of the location referenced by *q, which is ‘B’.

c1

c2

temp

Fifth and final line assigns to the location referenced by *q the value of temp, which is an ‘A’.

c1

c2

temp

4. Initial unsorted array:

	14
	10
	5
	3
	7
	9
	12
	16
	4
	8

After 1st pass:

	3
	14
	10
	5
	4
	7
	9
	12
	16
	8

After 2nd pass:

	3
	4
	14
	10
	5
	7
	8
	9
	12
	16

After 3rd pass:

	3
	4
	5
	14
	10
	7
	8
	9
	12
	16

After 4th pass:

	3
	4
	5
	7
	14
	10
	8
	9
	12
	16

After 5th pass:

	3
	4
	5
	7
	8
	14
	10
	9
	12
	16

After 6th pass:

	3
	4
	5
	7
	8
	9
	14
	10
	12
	16

After 7th pass:

	3
	4
	5
	7
	8
	9
	10
	14
	12
	16

After 8th pass:

	3
	4
	5
	7
	8
	9
	10
	12
	14
	16

After 9th pass:

	3
	4
	5
	7
	8
	9
	10
	12
	14
	16

Stop: no swaps occurred, array is sorted.

The green portion of the array shows that portion of the array that is sorted after the pass completes. Notice that i positions are sorted after the ith pass completes.

5. Initial array:

	14
	10
	5
	3
	7
	9
	12
	16
	4
	8

After 1st pass:

	10
	14
	5
	3
	7
	9
	12
	16
	4
	8

After 2nd pass:

	5
	10
	14
	3
	7
	9
	12
	16
	4
	8

After 3rd pass:

	3
	5
	10
	14
	7
	9
	12
	16
	4
	8

After 4th pass:

	3
	5
	7
	10
	14
	9
	12
	16
	4
	8

After 5th pass:

	3
	5
	7
	9
	10
	14
	12
	16
	4
	8

After 6th pass:

	3
	5
	7
	9
	10
	12
	14
	16
	4
	8

After 7th pass:

	3
	5
	7
	9
	10
	12
	14
	16
	4
	8

After 8th pass:

	3
	4
	5
	7
	9
	10
	12
	14
	16
	8

After 10th pass:

	3
	4
	5
	7
	8
	9
	10
	12
	14
	16

6. Initial array:

	14
	10
	5
	3
	7
	9
	12
	16
	4
	8

After 1st pass:

	3
	10
	5
	14
	7
	9
	12
	16
	4
	8

After 2nd pass:

	3
	4
	5
	14
	7
	9
	12
	16
	10
	8

After 3rd pass:

	3
	4
	5
	14
	7
	9
	12
	16
	10
	8

After 4th pass:

	3
	4
	5
	7
	14
	9
	12
	16
	10
	8

After 5th pass:

	3
	4
	5
	7
	8
	9
	12
	16
	10
	14

After 6th pass:

	3
	4
	5
	7
	8
	9
	12
	16
	10
	14

After 7th pass:

	3
	4
	5
	7
	8
	9
	10
	16
	12
	14

After 8th pass:

	3
	4
	5
	7
	8
	9
	10
	12
	16
	14

After 9th pass:

	3
	4
	5
	7
	8
	9
	10
	12
	14
	16

7. The array:

	2
	4
	5
	8
	10
	13
	14
	17
	22
	26
	34
	48

search element = 26

low = 0, high = 11, mid = 11/2 = 5, examine 13 (too small)

reset low end

low = mid + 1 = 6, high = 11, mid = 17/2 = 8, examine 22 (too small)

reset low end

low = mid + 1 = 9, high = 11, mid = 20/2 = 10, examine 34 (too big)

reset high end

low = 9, high = mid-1 = 9, mid = 18/2 = 9, examine 26 (FOUND)

8. The array:

	2
	4
	5
	8
	10
	13
	14
	17
	22
	26
	34
	48

search element = 3

low = 0, high = 11, mid = 11/2 = 5, examine 13 (too large)

reset high end

low = 0, high = mid-1 = 4, mid = 4/2 = 2, examine 5 (too large)

reset high end

low = 0, high = mid-1 = 1, mid = 1/2 = 0, examine 2 (too small)

reset low end

low = mid + 1 = 1, high = 1, mid = 2/2 = 1, examine 4 (too large)

reset high end

low = 1, high = mid-1 = 0, STOP high < low, search element not found.

9.
[image: image2.wmf]sec

2000

1000

2000000

t

)

8000

(

250

t

1000

t

)

20

(

250

)

10

(

3

3

=

=

Þ

=

Þ

=

Since there are 60 sec = 1 min, it will take 33 min 20 sec to solve your problem.

10. Given the following code segment; (a) what is the Big-Oh order of this code and (b) what is the value of x in terms of n after this code is executed?

 x = 0;

for (i = 1; i <= (4*n); i++)

 for (j = 1; j <= (2*n); j++)

x = x + i;

(a)
[image: image3.wmf])

n

(

O

n

8

)

n

4

(

n

2

1

n

2

1

2

2

n

4

1

i

n

2

1

j

n

4

1

i

=

=

=

=

å

å

å

=

=

=

(b)
[image: image4.wmf]2

3

2

3

2

n

4

1

i

n

2

1

j

n

4

1

i

n

4

n

16

2

n

8

n

32

2

)

1

n

4

(

n

8

2

)

1

n

4

(

n

4

n

2

i

n

2

i

+

=

+

=

+

=

+

=

=

å

å

å

=

=

=

B

A

A

p

q

B

B

A

p

COP 3502H (Exam #2 Review Notes – Day 22

p

q

q

A

B

A

B

?

?

p

A

q

B

A

char c1 = ‘A’, c2 = ‘B’, temp;

char *p = &c1, *q = &c2;

temp = *p;

*p = *q;

*q = temp;

#define CLASS_SIZE 100

struct student {

 char *name;

 int id;

 int course;

 char grade;

} class[CLASS_SIZE];

int A_counter(struct student class[])

{

 int i, counter = 0;

 for (i=0; i < CLASS_SIZE; ++i)

	counter += class[i].grade == ‘A’;

 return counter;

}

//You tell me what it does!

include <stdio.h>

 void one (char *s, int j, int k);

 void two (char *, char *);

int main (void)

{

 char string[] = “This is a sample problem for test #2”;

 one (string, 4, 16);

 printf(“%s\n”, string);

 return 0;

}

void one (char *s, int j, int k) {

 if (j < k) {

	two (&s[j], &s[k]);

	one (s, ++j, --k);

 }

}

void two (char *p, char *q) {

 char temp;

 temp = *p;

 *p = *q;

 *q = temp;

}

PAGE
6
Exam #2 Review Notes -

_1087213289.unknown

_1087214008.unknown

_1087220884.unknown

_1084783835.unknown

