
Algorithms

· What is an algorithm?

· How does an everyday algorithm differ from a computer algorithm? How are they similar?

· How do you describe an algorithm?

· What makes a “good” algorithm?

· Levels of abstraction, modularization.

· Steps in the development of algorithms.

· Algorithmic components: data structures, data manipulation instructions, conditional expressions, control structures, modules.

· Basic tools for building algorithms: data and operators.

· Rules for identifiers in C.

· Declaration of constants.

· Know how to declare integers, doubles, and characters as well as the standard operations used to manipulate these data types.

· The assignment statement in C. Know how it works and how to use it.

· Basic input and output in C: scanf and printf.

· Algorithmic decisions. The if and if-else statements in C.

· Relational operators: <, >=, ==, <=, <, !=

· Boolean operators: && (and), || (or), as well as ! (not). Know their truth tables.

· Be able to evaluate arithmetic and Boolean expressions using the precedence of the operators.

· Nested conditional statements.

· Nested if statements.

· Nested if-else statements.

· Be able to trace through code using these types of statements as well as being able to write code using them.

Algorithmic Complexity
· Asymptotic notation. What’s considered and what isn’t.

· Big-Oh notation.

· Omega notation.

· Theta notation.

· Little-Oh notation.

· Run-time approximations. (See Practice Problems #1 & Solutions.)

· Summations. Know the following:

[image: image1.wmf]å

å

å

å

=

=

=

=

+

=

=

+

=

+

=

n

1

i

n

0

i

n

1

i

n

0

i

1

n

1

n

1

2

)

1

n

(

n

i

2

)

1

n

(

n

i

Number Systems
· Know number systems, binary, octal, decimal, and hexadecimal.

· Know conversions between any of these number systems.

· Practice Problems #2 & Solutions.

Functions and Modularity
· Know what modularity is and why it is a “good” thing from an algorithmic point of view.

· Hierarchy of abstraction.

· Interfaces. What are they and what do they do?

· Parameters. What is a parameter and what is it used for?

· Call by Value (also referred to as Pass by Value).

· Call by Reference (also referred to as Pass by Reference).

· Functions in C. Two types, those that return a value and void functions which do not return a value.

· Function prototype. What is it and how is it used?

· The structure of a C program.

· Pointers in C. How to declare them and use them.

· Operators * and &.

Specifics
· Part of the test will be testing your ability to write small functions and incorporate them into programs.

· Part of the test will be testing your ability to trace through programs or program segments, including programs with functions that use pass by value and/or pass by reference parameters.

· Material covered on the test comes only from the lecture notes. No material will appear on the test which appears only in the textbook.

· Don’t forget to put comments in any code that you write on the test. This is just as important on this code as it is on code that you actually plan to execute.

Review/Sample Questions
1. What is the output of the following algorithm?

2. What will the following algorithm print?

3. Using the following two functions, write an algorithm that reads in two integers from the user and raises the first number to the second number power. Output the answer to the screen.

void GetNumbers (int *base, int *exponent)

/* collect the base and exponent from the user. Both are +integers */

int Power (int base, int exponent)

/* returns the base raised to the exponent power */

4. Write a function that prompts the user to enter 15 integer and prints out their sum, the minimum number input, and the maximum number input.

5. Write a function that takes in the weight of a letter and returns how much postage will cost for the letter assuming the following:

weight: 0-2oz.
postage = 20 cents + 3 cents/oz.

weight: 2-6oz.
postage = 26 cents + 2 cents/oz.

weight: >6oz.
postage = 28 cents + 1 cent/oz.

6. Evaluate the following expressions:

(5 + 2) % 3 + 4 * (6 + 4 – 2 * (3 – 2 * 6 + 67 / 9))

6 / 8 + 3 * (4 + 2 – 88 % 7)

7. Assume that x = 5, y = 12, and z = 9. What is the value of a in each of the following?

(a) if (x > y) || (z > x)

 a = 1;

else a = 2;

(b) if (y > x + z) && ((z > x) || (z < y))

a = 3;

 else a = 4;

8. Compute the following summations:

[image: image2.wmf]å

å

å

å

=

=

=

-

=

6

0

i

n

0

j

4

1

i

1

n

1

i

4

2

i

i

3

9. Convert the following from binary to decimal:

10111010

11110001

10. Convert the following from decimal to binary:

214 97

Answers to Review/Sample Questions
1. If input is m = 1 and n = 2 the output is:

m = 0 n = 5 j = 5

m = 10 n = 5 j = 10

2. The output is:

The number of rocks in the piles is: 10 20 200

The number of rocks in the first pile is now 31

The number of rocks in the second pile is now 200

The number of rocks in the third pile is now 41

3. The user’s algorithm would look something like the following:

4. The following will work, as will many others.

5. (5 + 2) % 3 + 4 * (6 + 4 – 2 * (3 – 2 * 6 + 67 / 9)) = 57
6 / 8 + 3 * (4 + 2 – 88 % 7) = 6

6. First if statement sets a = 1.

 Second if statement sets a = 4.

[image: image3.wmf]å

å

=

=

=

=

=

6

0

i

6

0

i

68

2

)

7

)(

6

(

3

i

3

i

3

[image: image4.wmf]å

å

å

å

å

=

=

=

=

=

+

=

=

=

=

+

=

=

n

0

j

n

0

j

4

1

i

4

1

i

n

0

j

)

1

n

(

5

1

5

)

10

(

2

1

2

)

5

(

4

2

1

2

)

1

n

(

n

2

1

i

2

1

2

i

[image: image5.wmf]å

å

-

=

-

=

-

=

-

=

´

=

1

n

1

i

1

n

1

i

4

n

4

)

1

n

(

4

1

4

4

8. (10111010)2 = (186)10 (11110001)2 = (241)10
9. (214)10 = (11010110)2 (97)10 = (1100001)2

Exam #1 Review Notes

int FindRate (int weight)

{

 int rate;

 if (weight <= 2)

	rate = 20 + 3 * weight;

 else if ((weight > 2) && (weight <= 6))

	rate = 26 + 2 * weight;

 else if ((weight > 6)

	rate = 28 + weight;

 return rate;

}

	

void question4 ()

 int	counter, number, sum = 0, min , max = 0;

 printf (“Please enter 15 numbers\n”);

 for (counter = 1; counter < 15; counter++)

 {

	scanf(“%d”, number);

	sum += number; //compute sum

	if (number > max)

		max = number; //set the maximum number

	if (counter == 1)

		min = number; //set initial minimum value

	if (number < min)

		min = number; //set minimum if change warranted

 }

 printf (“The sum was %d. The min was %d. The max was %d. \n”, sum, min, max);

}

	

int	basenum, exponval, result;

	GetNumbers(&basenum, &exponval);

	result = Power(basenum, exponval);

	printf (“%d raised to the %d th power is: %d\n”, basenum, exponval, result);

int Add_Pile (int a_pile, int another_pile)

{

	int return_pile;

	return_pile = 1;

	return_pile = a_pile + another_pile + return_pile;

	another_pile = a_pile * 2;

	return return_pile;

}

int main ()

{

	int first_pile, second_pile, third_pile, temp;

	first_pile = 10;

	second_pile = 20;

	third_pile = first_pile * second_pile;

	printf (“The number of rocks in the piles is %d %d %d \n”, first_pile,

		second_pile, third_pile);

	first_pile = Add_Pile(second_pile, third_pile);

	printf (“The number of rocks in the first pile is now: %d\n”, first_pile);

	second_pile = Add_Pile(second_pile, second_pile);

	temp = second_pile;

	second_pile = third_pile

	third_pille = temp;

	temp = 0;

	printf(“The number of rocks in the second pile is now %d\n”, second_pile);

	printf(“The number of rocks in the third pile is now %d\n”, third_pile);

}

int m ,n, j;

	scanf (“%d%d”, &m, &n); //assume user enters m =1 , n = 2

	j = 10;

	n = n + 3;

	while (m < n) {

		if (j < 10) {

			m = m + 10;

			j = j + 5;

		}

		else if (j > 10) {

			m = m + 1;

			j = 0;

		}

		else {

			m = m – 1;

			j = j – 5;

		}

		printf (“m = %d n = %d j = %d”, m, n, j);

	}

	printf (“The final value of m is %d\n The final value of n is %d\n”, m, n);

	

PAGE
1
Exam #1 Review Notes -

_1084787409.unknown

_1084793436.unknown

_1084871657.unknown

_1084783835.unknown

