
Introduction

Modularity is an important part of the algorithm/program design process. Most algorithms solve complicated problems that are best understood and solved in pieces. Modularity allows the designer to abstract the various pieces needed to solve the problem into manageable size tasks.

Modularity
· Subalgorithms are used to simplify the algorithm design and understanding.

· This is not just a “available option”, but the core of good algorithm design.

· Algorithms that do not feature modularity are low abstraction, hard to understand, and hard to debug.

· Modularity must be incorporated into any well designed algorithm.

A Hierarchy of Abstraction
· Each subalgorithm handles a single logical “chunk” of the solution.

· The “main” algorithm coordinates the overriding logic.

Graphical representation of abstraction featuring modularity

· It is abstraction because we are “considering the essence” (each task) “apart from the embodiment” (its component parts).

· It is a hierarchy of abstraction because we’re doing this at multiple levels: main, tasks, sub-tasks, sub-tasks of sub-tasks, etc. The details are hidden in the tasks and sub-tasks.

Advantages of Modularity
· The details of the algorithm are hidden in the subalgorithms. This enhances understanding the algorithms by hiding obscure details.

· Makes the algorithm easier to write by reducing the complexity.

· Saves time, space, and effort. Modules can be called from many different places within an algorithm. Rather than repeating the task, you simply call the same task again. Sort of like speed-dial on your phone.

· Permits the reuse of logic. If properly designed, modules can be reused across different algorithms. All that is required is that the different algorithms need the same sub-task to be performed.

· Enhances the ability to maintain and reuse the implemented algorithm.

Module Interfaces
· An interface is the common boundary between two bodies or spaces. In algorithmic terms, the interface specifies how the module can be connected to the outside world (i.e., to other algorithms).

Example

Consider the problem of obtaining a list of names, sorting those names into alphabetical order, and finally printing out the sorted list of names. This problem can logically be broken into three separate tasks (modules);

(1) An input module to read the list of names.

(2) A module to sort the names.

(3) An output module to print the sorted list of names.

When considering the second module to sort the names, we can choose any sorting technique that we want and change it whenever we feel like it without affecting the rest of the algorithm.

One thing will remain constant throughout our changing of the sorting technique in the second module and this will be how the module interfaces with the outside world. In other words it will always expect the same type of input and produce the same type of output regardless of the sorting technique that is currently employed in the module.
Parameters
An interface between algorithmic modules is defined in terms of parameters. Parameters are similar to other variables except that they specify the interface to a module. Parameters are used only when it is necessary to pass information between modules.

· A parameter is a special kind of variable that allows a data value to be passed between a module and any algorithm that might use that module.

· A parameter specifies a communication channel between two algorithmic components.

There are two types of parameters:

1. Call by Value parameters – allow values to be passed into a module by the caller. Call by value parameters are input parameters.

2. Call by Reference parameters – allow the module to return values to the caller. Call by reference parameters are input/output parameters.

Modules in C
In C we have a single construct that can be used to create modules, which is the function.

Functions are categorized by their return types:

· Functions that return a value – functions that perform some subtask that requires returning some value to the calling function.

· Void functions – functions that perform some subtask that does not require a single value to be returned to the calling function.

To incorporated the modularity provided by functions in C programs you need to be able to do two things:

1. Create functions.

2. Call functions from the main function as well as other functions.

Function Declarations
A function’s declaration (prototype) gives us all the information that we need to know about how to use the functions and no other details are provided. For example:

double power (double base, double exponent);

This prototype tells us that the function is named power and it returns a type double and has two parameters both of which are of type double.

The general format of a function declaration in C is:

return-type function_name (list of argument specifiers)

where:
return-type – specifies the type returned by the function.

function_name – any identifier you appropriately choose.

argument specifiers – list of type-identifier pairs, showing the

number of parameters with their types.

No information about how the function performs its task is provided, however, the user has enough information to invoke or use the function.

Examples

C Library Functions

Shown below are a few of the functions available in some of the various C libraries that you will find useful.

Library: ctype.h

int isalpha (int c);

int isdigit (int c);

int isupper (int c);

int islower (int c);

int tolower (int c);

int toupper (int c);

Library: math.h

double cos (double x);

double acos (double x);

double cosh (double x);

double exp (double x);

double ceil (double x);

double floor (double x);

double fabs (double x);

double pow (double x, double y);

double sqrt (double x);

Library stlib.h

int rand(void);

void srand (unsigned seed);

General Structure of a C Program
· A program is constructed of one or more functions; one of which must be main().

· Each functions must have been defined before it is called. The best way to organize modules in a program is to list the prototypes of all functions before the main function. Their definition can be placed after the main function.

Implementing Functions in a Program
A function implementation describes in detail how the function performs its task. Simply put, a function implementation is a complete, brief program that produces some effects if certain assumptions about the arguments to the function are satisfied.

Example

The first line of the implementation is called the function heading. The general form for a function implementation is:

<function heading>

{

<optional data declarations>

<executable statements>

}

Function Headings
A function heading must match up with a corresponding function declaration (prototype). The return type and a function name must be the same in the heading as they are in the declaration, and the arguments must match in a one-to-one correspondence between type and position.

In addition, each type in the argument list of a function heading must be followed by an argument name, usually called a formal parameter. The formal parameter list must match the number of arguments (usually called actual parameters) used when the function is called.

The general form of a function heading is:

<return type> <function name> (<list of formal parameters>)

Data and Executable Statements in a Function Implementation

· Declaration section is optional.

· The executable statement section has the same form as the executable statement section of the main function.

· Unless it is a void function, a function implementation must include at least one statement of the form:

return <expression>

Parameter Lists
In the function heading:

int min (int num1, int num2, int num3)

In the call to the module:

int smallest;

smallest = min (a, b, c);

Rules for Parameter Lists

· The number of parameters in the actual and formal parameter lists must be consistent.

· Parameter association in C is positional. This means that the first actual parameter corresponds to the first formal parameter, the second matches the second and so on.

· Actual parameters and formal parameters must be of compatible data types.

· Actual (input) parameters may be a variable, constant, or any expression matching the type of the corresponding formal parameter. For example, using the previous example we could have:

smallest = min(15, a, 5*b);

Examples
Example 1

Function implementation:

Calling the function min from the main program (function)

Example 2

Example 3

Example 4

Exercises for you to try
Write a function that takes in a number n (assumed to be an integer) and computes the sum of the first n integers and returns this value.

Write a program that uses the function from above to compute the first 20 triangle numbers. (The nth triangle number is simply the sum of the first n numbers.)

Solutions to exercises you were supposed to try

Void Functions

A void function does not return a value to the calling algorithm. A return statement is not included in a void function. After the last statement in a void function is executed, the control of execution is returned to the calling point in the calling algorithm (function).

Creating a void function

void function_name (formal parameters) {

.

.

.

}

Example

void draw_a_square (int length) {

	int	i, j;

	for (i = 1; i <= length; i++) {

		for (j = 1; j <= length; j++)

			printf (“*”);

		printf (“\n|);

	}

}//end function

#include <stdio.h>

		

int triangle_num (int n);

int main () {

	int index;

	//print first 20 triangle numbers

	for (index = 1; index <= 20; index++)

	 printf (“%d triangle number is %d\n, index, triangle_num(index));

}//end main

//Function: triangle_num

//Computes the sum of the first n integer numbers

//Input: n is a positive integer

//Output: The sum of 1 + 2 + 3 + … + n

int triangle_num (int n)

	int	index = 1, sum = 0;

	//return 0 if input is invalid

	if (n < 1)

		return 0;

	//compute sum

	for (index = 1, index <= n; index++)

		sum += index;

	

	return sum;

}//end function triangle_num

//Function: triangle_num

//Computes the sum of the first n integer numbers

//Input: n is a positive integer

//Output: The sum of 1 + 2 + 3 + … + n

int triangle_num (int n)

	int	index = 1, sum = 0;

	//return 0 if input is invalid

	if (n < 1)

		return 0;

	//compute sum

	for (index = 1, index <= n; index++)

		sum += index;

	

	return sum;

}//end function triangle_num

//This program conducts a shopping spree and prints the total amount spent

#include <stdio.h>

double total_with_tax(double value, double tax_rate);

int main () {

	char		ans;

	double	total_spent = 0.0;

			price,

			tax_rate;

	printf (“Is there another item to buy?\n”);

	scanf(“%c”, &ans);

	while (ans == ‘y’) {

		//read in value of item and tax_rate

		printf (“Enter the item price and tax_rate.\n”);

		scanf (“%lf%lf”, &price, &tax_rate);

		//reset the total

		total_spent = total_spent + total_with_tax(price, tax_rate);

		printf (“Is there another item to buy?\n”);

		scanf(“%c”, ans);

	}

	printf (“You spent %lf on your shopping spree.\n”, total_spent);

	return 0;

} //end main

//Function: total_with_tax

//Input: value is a positive number and tax_rate is between 0 and 1.

//Output: This function returns the total cost of an item based upon its price

// and the tax_rate.

double total_with_tax (double value, double tax_rate) {

		return value * (1 + tax_rate);

} //end total_with_tax

//Function: compute_grade

//Returns a numerical value between 0 and 4 corresponding to a given letter //grade. If the grade is invalid a –1 will be returned.

//

//Input: A single character. The character must be one of the following:

//	‘A’, ‘B’, ‘C’, ‘D’, or ‘F’.

//Output: A numerical value. A= 4, B = 3, C = 2, D = 1, and F = 0.

int compute_grade (char grade) {

	

	if (grade == ‘A’)

		return 4;

	else if (grade == ‘B’)

		return 3;

	else if (grade == ‘C’)

		return 2;

	else if (grade == ‘D’)

		return 2;

	else if (grade == ‘F’)

		return 1;

	else

		return –1;

}//end compute_grade

int f (char c, int i);

//note: parameter names need not be declared in the //prototype. See next example.

double find_avg (int, int);

Task

3

Task

2

Task

1

Main algorithm

Modularity: Functions – Chapter 7

Sub-task

2.1

Sub-task

2.2

Calling Module

variable

Called Module

parameter

a

x

x

a

Called Module

parameter

Calling Module

variable

preprocessor directives

function prototypes

int main () {

.

.

.

} //end main

function-1

function-2

.

.

.

function-n

//This function gets an integer value and returns its cube.

int cube (int num) {

 int result;

 result = num * num * num;

 return result;

}

The formal parameter list.

(parameter variables and their types are declared here)

The actual parameter list.

(cannot tell the parameter type from here)

//Function: min

//Finds the minimum of three integer values

//

//Input: three integer values

//Output: The integer which is the smallest in the list.

int min (int num1, int num2, int num3) {

	int minimum;				 local declaration

	if (num1 < num2

		minimum = num1;

	else 					 executable statements

		minimum = num2;

	if (num3 < minimum)

		minimum = num3;

	return minimum;			 returned value

}

#include <stdio.h>

int main ()

{

	int 	q1, q2, q3	//three quiz scores

		sid,		//student id

		count;		//counter for students

	double quiz_avg;

	count = 1;

	while (count <= 30) {

		printf (“\n Enter student id and quiz grades: “);

		scanf(“%d%d%d%d, &sid, &q1, &q2, &q3);

		quiz_avg = (q1+q2+q3 – min(q1, q2, q3))/2;

		printf (“%10d %7.2f\n”, sid, quiz_avg);

		count = count + 1;

	}//end while loop

	return 0;

}

/************** A simple calculator **/

#include <stdio.h>

//Function: calculate

//This function computes the value of a simple arithmetic expression.

//

//Input: A character representing the operator (it must be +, -, *, or /), and

// two integers representing the operands.

//Output: An integer value computed as the value of the given expression.

int calculate (char operator, int op1, int op2) {

	int result;

	if (operator == ‘+’)

		result = op1 + op2;

	else if (operator == ‘-‘)

		result = op1 – op2;

	else if (operator == ‘*’)

		result = op1 * op2;

	else 	result = op1 / op2;

	return result;

}//end function calculate

//calling algorithm

int main () {

	char symbol;

	int n1, n2, valid = 0;

	do {

		printf (“Enter the expression:”);

		scanf (“%c%d%d”, &symbol, &n1, &n2);

		if (symbol == ‘+’ || symbol == ‘-‘ || symbol == ‘*’ || symbol == ‘/’)

			valid = 1;

		else

			printf (“Unknown operator %c. Try again.\n”);

	} while (!valid);

	printf (“That computes to: %d\n”, calculate(symbol, n1, n2));

	return 0;

}//end

PAGE
1
Modularity: Functions -

