
Basic Text File Access

A file is a data target or data source that resides on disk and is completely independent from your C program. A file on disk exists whether or not your program is active in memory. It has a name of its own and a location of its own.

In order to connect your C program to a file, you need to:

1) declare a file pointer variable in your program

2) connect that file variable to the actual disk file with an fopen function call

3) remember to break the connection when you are finished with the file by an fclose function call.

In between steps 2 and 3, all communication between your program and the disk file is accomplished by referencing the file pointer variable and not by using the file’s disk name. The only place the file’s disk name is used is in the fopen function call.

The fopen function determines the mode of communication that your program will use in communicating with the file. The file can be opened for reading (using “r” mode) or opened for writing (using “w” mode). Let’s assume that a text file named data.txt resides in the default directory on your disk drive. You want to open this file for reading (as an input source for your program). First, declare a file pointer variable:

FILE * infile;

Then in your code section, make an appropriate call to the fopen function.

infile = fopen(“data.txt”, “r”);

If your function call fails for any reason (misspelled name etc) the infile pointer will have the NULL value. If it succeeds, the value will not be NULL. This means that the open call can be placed in an if statement that checks for failure and notifies the person running your program as follows:

The above will gracefully terminate your program if the input file is not opened correctly and continue running if it is opened successfully.

Assuming it opened correctly, your program can now communicate with the file by referencing the file pointer infile.

Example

To read a string variable called name from the file,

fscanf(infile, “%s”, name);

should work. There are other C functions that can read from a file opened in read mode. Most are listed in <stdio.h>

The use of fscanf is identical to that of scanf except for the new first argument. The first argument to fscanf must be a file pointer.

After you finish processing the file, close it with an appropriate call to the fclose function. The fclose function takes the file pointer as its only argument.

fclose (infile);

Now, suppose you want to open a file named output.txt to receive data from your program. Once again, you need a file pointer variable in your program to associate with the file.

FILE * outfile;

and an appropriate call to the function fopen to make the connection:

It is important to note that this fopen command is potentially destructive. If a file with the same name exists on your disk in the default directory it will be destroyed by this call.

fopen with a request for write mode can fail if there are problems with the drive such as no more available space (disk is full).

Assuming the file opened successfully, the file pointer outfile is not NULL and is your program’s link to the file. You may now write to the file using the fprintf function with the file pointer as the first argument. This function operates identically to printf but, like fscanf, requires the file pointer argument.

 fprintf(outfile, “\nThe value of the variable average is %f\n”, average);

There are other C functions that can write to a file that has been opened in write mode. Most are listed in <stdio.h>.

After you finish processing, be sure to close the output file with a call to fclose.

fclose(outfile);

This is even more important than closing a file that was opened in read mode. C writes output to buffers and, when it accumulates enough, writes the buffer to disk. If you forget to close an output file, the buffer may not flush and you may end up with a file on your disk with the right name of size 0. Closing the file properly sets the correct file size in the associated directory entry.

Character I/O
· The simplest approach to file processing is to go through files character by character.

· To read a single character you can use the function getc:

int getc (FILE *infile);

· To write a single character you can use the function putc:

int putc (int c, FILE *infile);

· Example: Copy one file to another by calling the following function:

void CopyFile(FILE *infile, FILE *outfile)

{

int ch;

while((ch = getc(infile)) != EOF){

putc(ch, outfile);

}

 }

Updating a file
Suppose you want to modify the contents of an existing file. The process of changing a file is called updating the file and is not as simple as it might seem.

The most common way to update a file consists of the following steps:

1. Open the original file for input.

2. Open a temporary file for output with a different name.

3. Copy the input file to temporary file, performing any updates as you go.

4. Close both files.

5. Delete the original file.

Rename the temporary file so that it once again has the original name.

Example
/*

 * This program copies a program from one file to

 * another, removing all comments .

 */

#include<stdio.h>

#include<string.h>

#define TRUE 1

#define FALSE 0

void CopyRemovingComments (FILE *, FILE *);

int main()

{

 char filename[20], *temp;

 FILE *infile, *outfile;

 printf("This program removes comments from a file.\n");

 while (TRUE) {

 printf("File name: ");

 scanf("%s", filename);

 infile = fopen(filename,"r");

 if (infile != NULL) break;

 printf("File %s not found. Try again.\n", filename);

 }

 temp = tmpnam(NULL);

 outfile = fopen(temp, "w");

 if (outfile == NULL)

 printf("Error: Can't open temporary file.\n");

 else {

 CopyRemovingComments(infile,outfile);

 fclose(infile);

 fclose(outfile);

 if (remove(filename) != 0|| rename(temp,filename) != 0)

printf("Unable to rename temporary file.");

 }

}

void CopyRemovingComments (FILE *infile, FILE *outfile)

{

 int ch, nch;

 int commentFlag;

 printf("Inside Copy function\n");

 commentFlag = FALSE;

 while ((ch = getc(infile)) != EOF) {

 if (commentFlag) {

 if (ch == '*'){

 nch = getc(infile);

 if (nch == '/')

 commentFlag = FALSE;

 else

 ungetc(nch,infile);

 }

 } else {

 if (ch =='/') {

 nch = getc (infile);

 if (nch == '*')

 commentFlag = TRUE;

 else

 ungetc(nch, infile);

 }

 if (!commentFlag) putc (ch,outfile);

 }

}

}

Formatted I/O
The printf function comes in three different forms:

printf(control string, …);

fprintf(output stream, control string, …);

sprintf(character array, control string, …);

The scanf function comes in three different forms:

scanf(control string, …);

fscanf(input stream, control string, …);

sscanf(character array, control string, …);

Libraries and Interfaces
· An interface is the boundary between the implementation of a library and programs that use that library (i.e. its clients) .

· The purpose of an interface is to provide each client with the information it needs to use the library without revealing the details required by the implementation.

· In C, an interface is represented by a header file, which traditionally has the same name as the file that implements it with the .c extension replaced by .h.

For example, you created a collection of functions that you want to make available to clients as a library. You need to create two files:

· an interface (mylib.h)

· contains only the functions prototypes

· corresponding implementation (mylib.c)

· Putting the prototypes in the interface makes them available to clients and is called exporting those functions.

· Interfaces can export :

· function prototypes

· data types

· constants

· In computer science the term package is used to describe the software that defines a library. That is:

· a .h file, and

· corresponding .c file

Example: Random Numbers
In order to generate a random number in your program, you must use the standard library functions: rand(), srand() and time().

You must include the following libraries in your program:

#include <stdio.h> //for standard input output

#include <stdlib.h> //for using the random functions

#include <time.h> // for using the time function

The following program illustrates the use of these functions:

int main()

{

int x, y, z, i;

int loop;

srand(time(NULL)); /* this basically turns on the
 random generator */

printf("Please Enter How many Random Numbers you would”

 “ like to generate\n");

scanf("%d", &loop);

for(i = 1; i<=loop; i++){

 // rand is a function that will return an integer.

 x = rand(); //will find random number btw 0 and 32767

 y = rand()%100; //will find random number btw 0 and 99

 z = ((rand()%100)-50); /* will find random number

 btw –50 and 49 */

 printf(" %d %d %d\n", x, y, z);

}

return 0;

}
A user defined library: The random.h interface

/*

 * File: random.h

 * --------------

 * This interface provides several functions for generating random

 * numbers.

 */

#ifndef _random_h

#define _random_h

/*

 * Function: RandomInteger

 * Usage: n = RandomInteger(low,high);

 * -----------------------------------

 * This function returns a random integer in the range low to high,

 * inclusive.

 */

int RandomInteger(int low, int high);

/*

 * Function: RandomReal

 * Usage: d = RandomReal(low,high);

 * --------------------------------

 * This function returns a random real number in

 * the half open interval [low,high).

*/

double RandomReal(double low, double high);

/*

 * Function: RandomChance

 * Usage: if (RandomChance(p)) ...;

 * --------------------------------

 * This function returns TRUE (1) with the probability indicated by p, which

 * should be a floating point number between 0 and 1. For example, calling

 * RandomChance(.30) returns TRUE 30 percent of the time.

 */

int RandomChance(double p);

/*

 * Function: Randomize

 * Usage: Randomize();

 * -------------------

 * This function initializes the random-number generator so that its results

 * are unpredictable. If this function is not called, the other functions will

 * return the same values on each run.

*/

void Randomize(void);

#endif

A user defined library: The random.c implementation

/*

 * File: random.c

 * --------------

 * This file implements the random.h interface.

 */

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include “random.h”

/*

 * Function: RandomInteger

 * -----------------------------------

 * This function begins by using rand to select an integer in the

 * interval [0,RAND_MAX] and then converts it to the desired range

 * by applying the following steps:

 *

 * 1. Normalize the value to a real number in interval[0,1)

 * 2. Scale the resulting value to the appropriate range size

 * 3. Truncate the scaled value to an integer

 * 4. Translate the integer to the appropriate starting point.

 */

int RandomInteger(int low, int high)

{

 int k;

 double d;

 d = (double) rand() / ((double)RAND_MAX + 1);

 k = (int) (d*(high – low + 1));

 return (low + k);

}

(continued on next page)

/*

 * Function: RandomReal

 * --------------------

 * The implemetation of RandomReal is similar to that of RandomInteger,

 * without the truncation step.

*/

double RandomReal(double low, double high)

{

 double d;

 d= (double) rand()/(double)RAND_MAX + 1;

 return (low + d * (high – low));

}

/*

 * Function: RandomChance

 * ----------------------

 * This function uses RandomReal to generate a real number in the

 * interval [0,1) and then compares that value to p.

 */

int RandomChance(double p)

{

 return(RandomReal(0,1) < p);

}

/*

 * Function: Randomize

 * -------------------

 * This function operates by setting the random number seed to the

 * current time.

*/

void Randomize(void)

{

 srand((int) time(NULL));

}

Constructing a client program: Craps
Problem specification: We want to develop an algorithm/program that will allow us to play the game of craps.

Problem analysis: Need to know how to play craps.

· A player rolls (throws) two dice.

· If the sum of the two dice is 7 or 11 on the first throw, the player wins.

· If the sum of the two dice is 2, 3, or 12 on the first throw, the player loses.

· If the sum of the two dice is 4, 5, 6, 8, 9, or 10 on the first throw, then that sum becomes the player’s point. To win, the player must continue rolling the dice until they make their point. The player loses by rolling a 7 before making the point.

Examples of playing the game:

(1) Player rolls 6 + 5 = 11

Player wins!

(2) Player rolls 6 + 6 = 12

Player loses.

(3) Player rolls 4 + 6 = 10

Point is 10

Player rolls 2 + 4 = 6

Player rolls 3 + 3 = 6

Player rolls 4 + 6 = 10

Player wins!

(4) Player rolls 1 + 3 = 4

Point is 4

Player rolls 1 + 4 = 5

Player rolls 5 + 4 = 9

Player rolls 4 + 6 = 10

Player rolls 6 + 3 = 9

Player rolls 5 + 2 = 7

Player loses

English algorithm:

(1) Roll two dice and get their sum.

(2) Check the sum and determine the status of the game

· Game status = 1; player wins

· Game status = 2; player loses

· Game status = 0; game in progress, player tries to make the point.

(3) If game status is 0, continue rolling dice until game status is 1 or 2.

(4) Print the results of the game.

Graphical algorithm:

Problems that still need to be addressed at implementation time:

At this point we have defined our algorithm, but certain issues may still be pending. For example, how do we simulate the rolling of the dice. These issues are independent of our algorithm and depend only upon the implementation.

/*

 * File : craps.c

 * ------------------

This program plays the casino game called craps, which is played using a pair of dice. At the beginning of the game, you roll the dice and compute the total. If your first roll is 7 or 11 you win with what gamblers call a “natural”. If your first roll is 2, 3, or 12 you lose by “crapping out”. In any other case, the total from the first roll becomes your “point”, after which you roll the dice until you roll your point again, in which case you win, or until you roll a 7, in which case you lose. Other rolls, including 2,3, and 12 have no effect during this phase of the game.

 * /

#include <stdio.h>

#include “random.h”

#define TRUE 1

#define FALSE 0

/* Function prototypes */

int TryToMakePoint(int point);

int RollTwoDice(void);
/* Main program */

int main ()

{

 int point;

 Randomize();

 printf(“This program plays a game of craps.\n”);

 point = RollTwoDice();

 switch(point){

 case 7: case 11:

 printf(“That’s a natural. You win.\n”);

 break;

 case 2: case 3: case 12:

 printf(“That’s craps. You lose.\n”);

 break;

 default:

 printf(“Your point is %d.\n”, point);

 if (TryToMakePoint(point))

 printf(“You made your point. You win.\n”);

 else

 printf(“You rolled a seven. You lose.\n”);

 }

}

/*

 * Function: TryToMakePoint

 * ------------------------

 * This function is responsible for the part of the game during which

 * you roll the dice repeatedly until you either make your point or

 * roll a 7. The function returns true or false.

 */

int TryToMakePoint(int point)

{

 int total;

 while (TRUE) {

 total = RollTwoDice();

 if (total == point) return (TRUE);

 if (total == 7) return (FALSE);

 }

}

/*

 * Function: RollTwoDice

 * ---------------------

 * This function rolls two dice and returns their sum. As part of the

 * implementation the result is displayed on the screen.

 */

int RollTwoDice (void)

{

 int d1, d2, total;

 printf(“Rolling the dice ... \n”);

 d1 = RandomInteger(1,6);

 d2 = RandomInteger(1,6);

 total = d1 + d2;

 printf(“You rolled %d + %d = %d\n”, d1,d2, total);

 return total;

}
Modular Development
Program structured as a single module:

Program divided into separate modules:

mylib.c

mylib.h

client.c

Any source file that makes use of the definitions exported by the library

The interface contains only the information about the library that its clients need to know.

The implementation contains the code to make the library work, the details of which are not of interest to clients.

program.c

main()

{

 ProcA();

 ProcB();

}

void ProcA(void)

{

 ...

}

void ProcB(void)

{

 ...

}

main.c

#include “module1.h”

#include “module2.h”

main()

{

 ProcA();

 ProcB();

}

module2.h

module1.h

void ProcB(void);

void ProcA(void);

module2.c

module1.c

#include “module2.h”

void ProcB(void)

{

 ...

}

#include “module1.h”

void ProcA(void)

{

 ...

}

Files and Libraries in the C Programming Language

if (NULL == (infile = fopen (“data.txt”, “r”))) {

printf(“\nError opening input file\n”);

exit(0);

}

if (NULL == (outfile = fopen (“output.txt”, “w”))) {

 		printf(“\nError opening output file\n”);

 exit(0);

}

false

false

true

true

false

true

false

true

begin

roll two dice

and

determine their sum

sum = 7 or 11

?

sum = 2,3, or 12 ?

Player WINS

game status = 1

point = sum

roll two dice

and

determine their sum

Player LOSES

game status = 2

sum = point

?

sum = 7 ?

Files in C - 17

