

Basic Tools for Building Algorithms

· Atomic Data

· Numbers: integers, real (floating point)

· Characters: alphabetic and symbols

· Booleans: true/false

· Pointers: reference memory addresses (locations)

· Operators

· Assignment: number1 = number2

· Arithmetic: +, -, *, /, ^

· Input/Output: scanf, printf (in C)

· Relational: <, >, ==, etc.

· Boolean: and, or, not

Creating Simple Variables
A variable can be thought of as a named box, or cell, in which one or more data values are stored and may be read or written by the algorithm.

An atomic variable is a variable that can hold only 1 individual piece of data, such as a number or a character.

The act of creating a variable is called declaring the variable. For every variable that is declared it must be explicitly typed. In other words, each variable has an associated data type.

An identifier is simply the algorithmic terminology for a name that we “make-up” to “identify” the variable. Every variable must be given a unique identifier so that there will be no ambiguity as to which piece of data we are referencing.

Examples

int age; /* declares a variable named age whose type is integer */

int test_score;

float average; /*declares a variable named average of type float */

Rules for Variable Identifiers in C
· A sequence of letters, digits, and the special character _ (underscore).

· A letter or the underscore character must be the first character of an identifier.

· The C language is case-sensitive. This means that first and First are two different identifiers.

Atomic Data Types in C
· Numbers

· int:

4 bytes

· short:

2 bytes

· long:

4 bytes

· unsigned:
4 bytes

· float:

4 bytes

· double:

8 bytes

· long double:
8 bytes

The range of values that can be stored in each type depends upon the particular computer hardware on which the program will be executed.

· Characters

· char:
1 byte

Examples

char your_grade;

char first, middle, last;

int age, year;

A variable can be assigned an initial value at the time it is declared.

int height = 75;

char grade = ‘A’;

Pointers
Pointers are used to access memory and manipulate memory addresses.

int alpha; /* alpha is an integer variable */

int *ptr; /* ptr is a pointer to an integer */

alpha = 7;

/* value of 7 is assigned to alpha */

ptr = α
/* ptr is assigned to reference the location named alpha */

ptr

alpha

printf(“%d\n”, *ptr); /* prints the contents of the address referenced by ptr */

We’ll cover pointers in much more detail later, for now just be aware that they are an atomic data type in C.

Arithmetic Operators in C
The four basic arithmetic operators are provided in C along with the modulus operator.

· Addition: +

· Subtraction: (

· Multiplication: *

· Division: /

· Modulus: %

Modulus (or modulo) operator produces the remainder portion of division.

For example, 11 % 5 = 1, 20 % 3 = 2 , 3 % 3 = 0

Operator Precedence
Let x = 1 + 2 * 3; What is the value of this expression? I hope you didn’t say 9! The answer is clearly 7 since the multiplication operation has precedence over the addition operation.

Associativity (left to right)

10 + 3 + 7 = 20

10 – 3 + 7 = 14

15 / 5 * 2 = 6

Assignment Operator / Assignment Statement
general form: variable = expression;

· The expression can be a constant or a variable.

int x, y;

x = 5;

y = x;

x = 6;

· The expression can be an arithmetic expression.

x = y + 1;

y = x * 2;

x = x + 10;

· Assignment compatibility: There must be compatible types on both sides of the assignment operator or an error will occur.

int x;

double y;

char c;

c = ‘9’;

/* ok */

c = ‘10’;

/* error */

c = 9;

/* ok in C, not all languages though */

x = y;

/* y is truncated to fit into x */

y = x;

/* ok */

x = 5 + 3.2;
/* truncates the result to 8 */

y = 5 + 3.2;
/* ok */

x = 10/4;
/* x is 2, this is integer division, no remainder */

y = 10/4;
/* y is 2.0 */

y = 10/4.0;
/* y is 2.5

· For pointers, assignment means one of the following depending on how it is used:

(1) Creating a new variable.

If we already had:

int *this;

int *that;

and then we do the following:

this = malloc(sizeof(int));

this will allocate a new memory space for the pointer and makes the pointer variable refer to it as shown below:

(2) Assign the address of a declared variable.

int alpha;

this = α /* this refers to the same address as alpha */

(3) Assigning a value to a variable to which a pointer points.

*this = 4;

This type of assignment will assign the value 4 to the integer variable to which the pointer variable refers.

situation before assignment:

situation after the assignment:

(4) Making one pointer variable refer to another pointer variable.

that = this;

Input and Output Operators in C
Input and output operators allow the program (algorithm) to communicate with the outside world (the world beyond the algorithm). Remember that we said an algorithm required input and produced some output, we’ll in C this is how it does this.

Input

scanf – obtains (reads) an input value.

general format: scanf(format control string, input variable list);

Each read operation does two things:

(1) Obtains the next value from “outside” the algorithm.

(2) Stores this value in the specified variable.

For example, scanf(“%d”, &num);

The symbol & represents the address operator. The format “%d” causes input characters typed at the keyboard to be interpreted as a decimal integer. The value of this decimal integer is stored at the address of the variable num.

Output

printf – sends out (writes) an output value.

general format: printf(format control string, output variable list);

For example, printf(“%d”, num);

 printf(“Hello World”);

· scanf and printf can take any number of arguments, however the number of conversion characters must equal the number of arguments.

· Conversion characters for different types:

	Conversion Character
	Works With
	How corresponding argument is read or written

	c
	printf or scanf
	as a character

	d
	printf or scanf
	as a decimal integer

	e
	printf
	as a floating point in scientific notation

	f
	printf or scanf
	as a floating point

	g
	printf
	in the e or f format whichever is shorter

	s
	printf or scanf
	as a string

	lf
	scanf
	as a floating point (double)

	Lf
	scanf
	as a floating point (long double)

A Simple C Program

Literals
Literals are data values that are “hardwired” into the algorithm. The value of a literal is taken literally!

Each of the following assignment statements contains a literal value.

int num, score;

char grade;

num = 1;

grade = ‘A’;

score = 42;

Constants
A constant allows the designer of the algorithm to give a name (identifier) to a fixed value. This makes the program easier to read and understand. For example, suppose we define the following constants:

#define PI 3.1415926

#define NUMBER_STUDENTS 60

Then instead of : area = 3.1415926 * radius * radius;

we would have: area = PI * radius * radius;

Or, instead of average_score = total_of_scores/60;

we would have: average_score = total_of_scores/NUMBER_STUDENTS;

Another Simple C Program Example

Algorithmic Decisions
All algorithmic decisions are based upon the evaluation of conditional expressions. Conditionals allows us to make decisions about data. The result of a conditional evaluation is always either true or false (i.e. Boolean values).

Using natural language, an algorithmic decision might be something like: “Is it true that the number of credit hours currently enrolled is greater than or equal to 15?”

Using a graphical description such as a flowchart the algorithmic decision would be represented as:

false

 true

Using a programming language, such as C, the algorithmic decision would be expressed as:

if (number_of_hours <= 15) …

Relational Operators
The general syntax of a conditional expression is:

<operand> <relational operator> <operand>
There are six relational operators:

· greater than

>

· greater than or equal to
>=

· equal to

==

· less than or equal to
<=

· less than

<

· not equal to

!=

Each operand can be an indentifier, constant, literal, or an expression.

Examples

num1 < num2

num1 < PI

num2 >= 50

(x * y) == (x + y)

Although it is most common to compare numerical expressions, you may also compare characters with these operators as well, since they are stored internally as integer values. However, you cannot accurately compare strings of characters with these operators. Characters are compared in alphabetical order, so for example, ‘a’ < ‘b’.

Practice Problems
Here are some examples of Boolean expressions. See if you can figure out if they are true or false.

char ch;

int x, y;

ch = ‘j’;

x = 6*2;

y = 3*x – 10 % x;

(1) x + y > 40

(2) ch == ‘k’

(3) (x-y) != (7 * (3 – x % 7))

Boolean Operators
All but the simplest of algorithms will require complex decisions to be made during execution of the algorithm. Frequently, the decision will have multiple parts. For example,

if (the class is not full) AND

(it does not conflict with a class in the schedule) …

Boolean operators allow us to express compound conditional like the one above. There are three Boolean operators.

· AND (&&)

· Binary operator.

· Requires that both conditions be true if the expression is to evaluate to true.

· ((5 > 4) && (4 > 7)) evaluates to FALSE.

· OR (||)

· Binary operator.

· Requires at least one condition be true if the expression is to evaluate to true.

· ((5 > 4) || (4 > 7)) evaluates to TRUE.

· NOT (!)

· Unary operator.

· Produces the reverse of the Boolean value of the operand.

· !(4 > 7) evaluates to TRUE.

Truth Tables For Boolean Operators
Shown below are the generic truth tables for the Boolean operators. It’s a really good idea to memorize these right now. You will see them over and over as you study computer science.

	Value of a
	Value of b
	Value of (a && b)

	True
	True
	True

	True
	False
	False

	False
	True
	False

	False
	False
	False

Truth table for AND (&&) operator

	Value of a
	Value of b
	Value of (a || b)

	True
	True
	True

	True
	False
	True

	False
	True
	True

	False
	False
	False

Truth table for OR (||) operator

	Value of a
	Value of (!a)

	True
	False

	False
	True

Truth table for NOT (!) operator

Acting on Decisions
Once the conditional expression has been evaluated (you know whether it is true or not) a control structure is required to dictate what happens next in the algorithm. Most modern programming languages have several different types of control structures. Perhaps the simplest of these is the if-then-else construct:

general form:

if <boolean_expression>

statement 1;

else

statement 2;

statement 3;

statement 4;

…

Execution of an if-then-else statement is as follows:

1. Check if the boolean expression is true.

2. If so, go ahead an execute statement 1, then skip to the end of the if statement.

3. Otherwise, go ahead and execute statement 2, then skip to the end of the if statement.

4. Continue on, executing statement 3 followed by statement 4, and so on.

· There is no way for all four of the statements in the above code segment to be executed in a single sequence.

· What happens if you need to execute more than a single statement inside either the if clause or the else clause? C allows the use of a block of statements anywhere that a single statement can appear. A block of statements is a group of statements surrounded by curly braces ({ }) on both sides. The compiler treats this entire group of statements as a single statement, syntactically.

Generalized form of if-then-else statement (construct)

if (<boolean expression>) {

statement 11;

statement 12;

…

statement 1n;

}

else {

statement 21;

statement 22;

…

statement 2m;

}

statement A;

statement B;

…

This general form is executed as follows:

1. Check if the boolean expression is true.

2. If so, go ahead and execute statement 11 through statement 1n in order.

3. Otherwise, go ahead and execute statement 21 through 2m in order.

4. Continue on, executing statement A, statement B, …

Example

1. Determine whether a given average score passes or fails.

#define PASSING 60

int main ()

{

int pass;

double average;

scanf(“%lf”, &average);

if (average < PASSING)

pass = 0;

else

pass =1;

if (pass)

printf(“You passed.\n”);

else

printf(“You failed.\n”);

}

Nested Conditional Statements

The if-else statement can be nested to allow the programmer the ability to program a complex decision structure. The general form of a nested if-else statement is shown below:

if (<boolean expression1>)

<statements 1>

else if (<boolean expression2>)

 <statements 2>

else if (<boolean expression3>)

 <statements 3>

. . .

else

 <statements n>

statement A

statement B

. . .

This statement is executed as:

1. Check if <boolean expression1> is true

2. If so, then execute block of statements <statements 1>

3. If not, check if <boolean expression2> is true

4. If so, then execute block of statements <statements 2>

5. If not, check if <boolean expression3> is true

6. Continue in this fashion until one of the boolean expressions is true

7. Skip all remaining blocks of statements and continue execution with statement A, ….

Note: The else clause is always optional. There may be cases in which you do not want to execute any statements based upon a particular decision.

Examples

Note: Having the conditions in the wrong order can lead to errors as the following example illustrates:

Nested If Statements
It is possible to have an if statement inside another if statement. Similarly, one of the statements inside of an else clause may be an if statement. This can lead to a problem with matching the correct else clause to the correct if statement. However, the rule is always the same:

Example

if (month == 4)

if (day > 15)

printf (“Your late with your taxes.\n”);

else printf (
“Hurry, file your taxes before 4/15.\n”);

If the variable month were equal to 7 when this block of code began to execute, what would be printed out? Nothing! If you wanted one of the two messages to be printed regardless of the value of the variable month you would need to do the following:

if (month == 4) {

if (day > 15)

printf (“Your late with your taxes.\n”);

}

else

 printf (“Hurry, file your taxes before 4/15.\n”);

Order of Operations
The order of precedence of && and || is lower than any arithmetic operator. If you ever have any doubt how the computer will interpret your expressions, use parentheses to explicitly dictate how the expression is to be evaluated. By the way, the precedence of && is higher than ||.

(x > 7) || (y < 6) && (z == 3)

will be interpreted as:

(x > 7) || [(y < 6) && (z == 3)]

More Examples

Consider the following problem: Suppose that we need to determine if a specific desk will fit into a given room. Suppose that we know the length and width of both the desk and the room. We want to write a C program that will solve our problem assuming that the user inputs the length and width of the room and the desk. Assume that the user will enter only positive numbers for each dimension.

Does the program below correctly solve our problem?

Question? Will the program shown above generate the correct answer in every situation? Why or why not?

Answer. No, Consider a room which has length = 6 and width = 4 and a desk with length 4 and width 6. The program above will tell you that the desk will not fit when clearly it would fit. What is required is to “rotate” the desk. See the following version of the algorithm for a better solution.

Another way of solving the same problem is to use a more complicated decision structure.

//program to determine if a desk fits into a room given the length and width of both the

// desk and the room.

#include <stdio.h>

int main () {

 int roomlen, roomwid;

 int desklen, deskwid;

 printf(“Enter the length and width of the room.\n”);

 scanf(%d%d”, &roomlen, &roomwid);

 printf(“Enter the length and width of the desk.\n”);

 scanf(%d%d”, &desklen, &deskwid);

 if ((deskwid <= roomwid) && (desklen <= roomlen))

 printf (“The desk will fit into the room.\n”);

 else if ((deskwid <= roomlen) && (desklen <= roomwid))

 printf (“The desk will fit into the room.\n”);

 else

 printf(“The desk will not fit into the room.\n”);

 return 0;

} //end main

	

//program to determine if a desk fits into a room given the length and width of both the

// desk and the room.

#include <stdio.h>

int main () {

 int roomlen, roomwid;

 int desklen, deskwid;

 int temp; /* used for temporarily holding a value */

 printf(“Enter the length and width of the room.\n”);

 scanf(%d%d”, &roomlen, &roomwid);

 printf(“Enter the length and width of the desk.\n”);

 scanf(%d%d”, &desklen, &deskwid);

 //adjust widths and lengths if necessary

 if (roomlen < roomwid)

 temp = roomlen;

 roomlen = roomwid;

 roomwid = temp;

 if (desklen < deskwid)

 temp = desklen;

 desklen = deskwid;

 deskwid = temp;

 if ((deskwid <= roomwid) && (desklen <= roomlen))

 printf (“The desk will fit into the room.\n”);

 else

 printf(“The desk will not fit into the room.\n”);

 return 0;

} //end main

	

//program to determine if a desk fits into a room given the length and width of both the

// desk and the room.

#include <stdio.h>

int main () {

 int roomlen, roomwid;

 int desklen, deskwid;

 printf(“Enter the length and width of the room.\n”);

 scanf(%d%d”, &roomlen, &roomwid);

 printf(“Enter the length and width of the desk.\n”);

 scanf(%d%d”, &desklen, &deskwid);

 if ((deskwid <= roomwid) && (desklen <= roomlen))

 printf (“The desk will fit into the room.\n”);

 else

 printf(“The desk will not fit into the room.\n”);

 return 0;

} //end main

	

// Program Description: This program asks the user for three values: a, b, and c used in

// in the equation ax + by = c used to determine the slope of a line

//			 Using this information the algorithm will determine if the slope of

//			 the line is positive, negative, zero, or undefined (vertical line).

#include <stdio.h>

int main () {

	//read in the values for a, b, and c

	double a, b, c;

	printf(“Enter the values of a, b, and c for your line. \n”);

	scanf(“%lf%lf%lf”, &a, &b, &c);

	//handle the invalid case

	if (a == 0) && (b == 0)

	 printf(“Sorry! You did not enter a valid line equation.\n”);

	else {

		//Handle all valid cases separately

		if (b == 0)

		 printf (“The slope is undefined. This is a vertical line.\n”);

		else if (a == 0)

			printf(“The slope of the line is 0.\n”);

		else if (a/b > 0)

			printf(“The slope of the line is positive.\n”);

		else

			printf(“The slope of the line is negative.\n”);

	}

} //end main

Without curly braces to override placement an else clause is always associated with the nearest if statement.

/************ Assigning Letter Grades - BAD EXAMPLE *********************/

int	num_avg;

char	letter_grade;

scanf(“%d”, &num_avg);	/* input numerical average score */

if (num_avg < 60)

	letter_grade = ‘F’;

else if (num_avg >= 60)

	letter_grade = ‘D’;

else if (num_avg >= 70)

	letter_grade = ‘C’;

else if (num_avg >= 80)

	letter_grade = ‘B’;

else

	letter_grade = ‘A’;

printf(“Your grade is: %c\n”);

/********************* Assigning Letter Grades **********************************/

int	num_avg;

char	letter_grade;

scanf(“%d”, &num_avg);	/* input numerical average score */

if (num_avg >= 90)

	letter_grade = ‘A’;

else if (num_avg >= 80)

	letter_grade = ‘B’;

else if (num_avg >= 70)

	letter_grade = ‘C’;

else if (num_avg >= 60)

	letter_grade = ‘D’;

else

	letter_grade = ‘F’;

printf(“Your grade is: %c\n”);

credit hours >= 15

/* This program will determine the circumference and area of a circle given its radius */

/* LAB SECTION NUMBER:

 ASSIGNMENT NUMBER:

 YOUR NAME:

 DATE:

*/

#include <stdio.h>

#define PI 3.1415926

int main ()

{

	/* variable declarations */

double radius,				

	 diameter,

	 circumference,

	 area;

/* get the data values */

	printf(“Enter the radius”);	

	scanf(“%d”, &radius);			

	/* perform the calculations */

	diameter = radius * 2;

	circumference – 2 * PI & radius;

	area = PI * radius * radius;

	/* display the results */

	printf(“\n\nThe circumference is: %d “, circumference);

	printf(“The area is %d.\n”, area);

}

/* This program adds the two numbers that it reads and prints the sum */

/* LAB SECTION NUMBER:

 ASSIGNMENT NUMBER:

 YOUR NAME:

 DATE:

*/

#include <stdio.h>

int main (void)

{

	int num1, num2, sum;			/* variable declarations */

	

	printf(“Enter your first integer. \n”);	/*display user prompt */

	scanf(“%d”, &num1);			/* read first integer */

	printf(“Enter your second integer. \n”);	/*display user prompt */

	scanf(“%d”, &num2);			/* read second integer */

	sum = num1 + num2;			/*calculate sum */

	printf(“The sum is %d.\n”, sum);		/*print the sum */

	return(0);					/*programs ends correctly */

}

 that

4

this

4

this

?

this

?

this

7

Basics of Algorithms

PAGE
26
Algorithms -

