
Before introducing new material, here are the recursive versions of the algorithms from the linked list notes (Day 15).

Stacks

· A stack is a collection of items into which new items are inserted and from which items are deleted from only one end, called the top of the stack.

· Different implementations are possible; although the concept of a stack is unique.

· Example: Trays in the cafeteria.

· There are two primary operations defined on a stack:

· push: add a new item to the top of the stack.

· pop: removes the item from the top of the stack.

· A stack is also known as a push-down list.

· The “access policy” of a stack is LIFO (Last In First Out).

· A stack is a dynamic structure. It changes as elements are added to and removed from it.

 pop

push

· A stack can be implemented as a constrained version of a linked list. A stack is referenced via a pointer to the top element of the stack. The link member in the last node of the stack is set to NULL to indicate the bottom of the stack.

· Example:

stackptr

where stackptr points to the top of the stack.

· Note that stacks and linked lists are represented identically. The difference is that insertions and deletions occur anywhere in a linked list but are constrained to only the top of a stack.

· Function push creates a new node and places it on the top of the stack.

· Function pop removes a node from the top of the stack and frees the memory that was allocated to the popped node, and returns the popped node.

Implementation of a simple stack of integers

Applications of Stacks
Reading a line of text and writing it out backwards (palindrome checking)

Evaluation of arithmetic expressions

· Notation can be infix, postfix, or prefix.

· Infix: operators appear between operands. A + B

· Postfix: operators appear after operands. AB+

· Prefix: operators appear before operands. +AB

· Operators in a postfix expression are in correct evaluation order and operands appear in the same order as in an infix expression.

· Compilers convert infix expressions into postfix expression since they are easy to evaluate with a stack.

Postfix Expressions
· Precedence of * is higher than +

Infix: a + b * c

Postfix: abc*+

· Precedence of * and / are the same and they are left associative.

Infix: a + b * c / d

Postfix: abc*d/+

· Parentheses override the precedence rules.

Infix: (a + b) * c

Postfix: ab+c*

· More examples

Infix: (a + b) * (c – d)

Postfix: ab+cd-*

Infix: a – b/ (c + d * e)

Postfix: abcde*+/-

Infix: ((a + b) * c – (d – e))/(f + g)

Postfix: ab+c*de- -fg+/

· Association is assume to be left to right except for exponentiation where the association is right to left.

Infix: a + b + c = (a + b) + c

Postfix: ab+c+

Infix: a ^ b ^ c = a ^ (b ^ c)

Postfix: abc^^

Algorithm for Converting an Infix Expression to Postfix

Evaluating a Postfix Expression
Since each operator in a postfix expression refers to the previous two operands, every time we read an operand, push it onto the stack. When we read an operator, its operands are the top two elements in the stack. Pop these two elements, perform the indicated operation and push the result back onto the stack so that it will be available for use as an operand for the next operation.

Queues
· A queue is a list from which items may be deleted at one end (the front or head) of the list and into which items may be inserted at the other end (the rear or tail).

· A queue is similar to a checkout line at the grocery store – first come first served. Unlike a stack which is LIFO a queue is FIFO.

· Queues have many applications in computer systems ranging from process/job scheduling to printer spooling to packet processing in networks.

· Primitive operations defined for a queue are:

· enqueue(q, x) which inserts item x at the rear/tail of queue q.

· dequeue(q, x) which removes item x from the front/head of queue q.

· isEmpty(q) which returns true if queue q is empty and false otherwise.

· Example:

enqueue(q, ‘A’);

enqueue(q, ’B’);

enqueue(q, ‘C’);

x = dequeue(q);

enqueue(q, ‘D’);

enqueue(q, ‘E’);

x = dequeue(q);

Linked List Implementation
Just like the stack, we keep additional pointers to allow access to the structure. In the case of the queue, we need two additional pointers, one to the front and one to the read of the queue.

while there are more characters in the input string

{

	read the next symbol ch in the infix expression

	if ch is an operand, put it into the output string.

	If ch is an operator

	{

		check the item op on the top of the stack

		while (more items in the stack &&

			precedence (ch) <= precedence(op)

		{

			pop op and append it to the output string.

			op becomes the next top element.

		}

		push ch onto the stack

	}

}

//reverses a line of text.

int main()

{

	structu stackNode *top = NULL;

	int c;

	

	while ((c = getchar())!= ‘\n’);

		push(&top, c);

	while(!isEmpty(top))

		printf(“%c”, pop(&top));

	printf(“\n”;

}

	topptr = (topptr)->nextptr;

	free(tempptr);

	return popvalue;

}

//check for an empty stack

int isEmpty(struct stackNode *topptr)

{

	return topptr ==NULL;

}

struct stackNode{

 int data;

	struct stackNode *nextptr;

};

//inserts a node at the top of the stack

void push(struct stackNode **topptr, int info)

{

	struct stackNode *newptr;

	newptr = (struct stackNode *)

 malloc (sizeof (struct stackNode));

	if (newptr != NULL)

	{	newptr->data = info;

		newptr->nextptr = *topptr;

		*topptr = newptr;

	}

	else

	 printf(“%d not inserted. No memory available.\n”, info);

}

//remove a node from the top of the stack

int pop(struct stackNode **topptr)

{

 struct stackNode *tempptr;

	int popvalue;

	tempptr = *topptr;

	popvalue = (*topptr)->data;

3

5

2

8

H

A

//Copies the contents of an array into a dynamically //growing list.

struct node *array_to_list (int a[], int j, int n)

{

 struct node *head;

 if (j >= n) //base case

		return NULL;

 else

 { 	head = malloc(sizeof(struct node));

		head -> data = a[j];

		head ->next = array_to_list(a, j+1, n);

		return head;

 }

}

	

Practice: Create a recursive version of this function to count the nodes in a linked list. Answer will appear in the next set of notes.

//Count the number of nodes in a list

 int count(struct node *head)

{

 if (head == NULL) //base case

		return 0;

 else

 		return (1 + count(head->next));

}

	

Practice: Create a recursive version of this function to create a linked list from an array of values. Answer will appear in the next set of notes.

H

F

E

D

C

 Data Structures: Stacks and Queues (Day 17)

B

A

top

G

F

E

D

C

B

A

top

G

F

E

D

C

B

void isEmpty(struct queue q)

{

	return q.front == NULL

}

void dequeue(struct queue *q)

{

	char value;	

struct queueNode *tempptr;

	

	value = q->front->data;

	tempptr = q->front;

	q->front = q->fron->next;

if (q->front == NULL)

	q->rear = NULL;

	free(tempptr);

	return value;

}

void enqueue(struct queue *q, char value)

{

	struct queueNode *newptr;

	

	newptr = malloc(sizeof(struct queueNode));

	if (newptr != NULL)

	{

	 newptr->data = value;

	 newptr->next = NULL;

	 if (isEmpty(*q))

		q->front = newptr;

	 else

		q->rear->next = newptr;

	 q->rear = newptr;

	}

	else

	 printf(“%c” is not inserted. No memory available.\n”, value);

}

struct queueNode{

	char data;

	struct queueNode * next;

};

struct queue{

	struct queueNode *front;

	struct queueNode *rear;

};

rear

front

D

C

B

A

E

D

C

B

rear

front

rear

front

C

B

A

PAGE
4
Stacks and Queues -

