
Introduction to Skip Lists
Linked lists have one serious drawback: They require sequential scanning to locate an element during a search. The search must start from the beginning of the list and terminates when either the search element is found or the end of the list is encountered without finding the search element. Ordering the elements in the list can speed up the searching, but a linear (sequential) search is still required.

There have been several hybrid list structures that have been developed which allow searching in a list to occur in other than sequential fashion. Most commonly these techniques allow the search to “skip over” certain nodes in the list to avoid the cost of the sequential search. The skip list is one such variant of the ordered list which make nonsequential searching possible.

A Simple Skip List
Can you think of a simple way to reduce the worst case “cost” (in terms of the potential number of comparisons that need to be made against the search element) of a search in an ordered linear list of n nodes from n comparisons to n/2+1 comparisons? The way to do this is to maintain one additional pointer (reference) to the middle element in the list. With this single additional reference, all searches begin with a comparison against this middle list element. If the search is for an element smaller than the middle element, the only the left-half of the list need to be searched and if the search element is larger than the middle element, only the right-half of the list will be searched. This technique is basically the simplest form of a skip list. In general, skip lists will reduce the cost of a given search much more dramatically, as we will shortly discover. Figures 1 and 2 shown below, illustrate the simple skip list principle.

(Figure 1) A simple ordered linked list with head and tail nodes
Now consider the simple ordered list shown above with the addition of a single pointer to the middle of the list, which in this case is the node containing the element 40. This new list is shown in the Figure 2.

(Figure 2) A simple skip list with a pointer to the middle of the list

The number of nodes in the list in the two figures above is seven. If the search in the original ordered list were for the value 80, exactly seven (n) comparisons with values in the list would be performed before the search element was located in the list. Using the simple skip list the number of comparisons for this search decreases to exactly four (n/2+1).

Skip Lists
Skip lists, in general, extend the concept illustrated above with the simple skip lists to various levels of extreme. The level to which the skip list is extended depends upon the desired level of trade-off between the increasing level of complexity of the structure and the benefit in terms of reducing the number of comparisons required per search. Consider the skip list illustrated in Figure 3:

(Figure 3) Skip list with pointers to every second node

In the skip list shown in Figure 3 above, there are essentially three separate linked lists that are maintained within this structure. Working up from the bottom of this structure, the level 0 list is essentially the list which was shown in Figure 1. The level 0 list maintains a pointer between each consecutive node in the list. Moving up one level, the level 1 list maintains a pointer to every second node in the list. Moving up to the final level, the level 2 list maintains a pointer to every fourth node in the list.

In general, an element in a skip list is called a level i element iff it is in the list for levels 0 through i and is not in the level i+1 list (if this level list exists). In the example above, element 40 is the only level 2 element since it appears in levels 0, 1 and 2 (there is no level 3 in this case). Elements 24 and 75 are the level 1 elements (they appear in levels 0 and 1, but not 2). Elements 20, 30, 60, and 80 are the level 0 elements as they appear in the level 1 list but not in the level 2 list. In general, the level i list includes every 2i th element that appears in the level 0 list.

A skip list is a structure that consists of a hierarchy of ordered linear lists. The level 0 list is a sorted list of all n elements. The level 1 list is an ordered linear list that consists of some subset of the elements in the level 0 list. In general, the level i list consists of a subset of the elements in the level i-1 list. There are two general variations of skip lists: regular skip lists are those in which selected subsets generate evenly spaced “skips” and irregular skip lists, those in which the selected subsets generate unevenly spaced “skips”. Figures 4 and 5 shown below illustrate the differences in the two variations of skip lists.

(Figure 4) Regular Skip List (3 levels in this example – numbered 0-2 bottom to top)

(Figure 5) Irregular Skip List (4 levels in this example – numbered 0-3 bottom to top)

From an analysis point of view, the performance of an irregular skip list for a random search or a sequence of random searches is much harder to determine than that of the regular skip list. Typically, irregular skip lists are developed using either randomized “skips” or those which are in some fashion determined based upon probability. We will concentrate on the regular skip list for the remainder of this set of notes and ignore the more complex irregular skip lists.

Regular Skip Lists
For a regular skip list of n nodes we have:

For each k and i such that 1 (k ((lg n(and 1 (i ((n/2k-1((1, the node in position 2k-1(i points to the node in position 2k-1((i+1)

This means (as we saw earlier) that the every second node points to the node two positions ahead (its second successor node), every fourth node points to the node four positions ahead (its fourth successor node), and so on. The figures illustrating the skip lists made apparent the fact that the various nodes in the skip list contain different numbers of reference fields. Half of the nodes contain just one reference field, one-fourth of the nodes will contain two reference fields, one-eighth of the nodes will contain three reference fields, and so on. The number of reference fields in a given node represents the level of the that node, and the number of levels in a regular skip list is given by:

maximum_level = (lg n(+ 1.

Searching a Regular Skip List
Searching for an element consists of following references on the highest level of the structure until an element is found which successfully terminates the search. Successful termination of the search will occur whether the search element is in the skip list or not. Successful termination of the search will occur at some point within the structure if the search element exists in the skip list, otherwise successful termination will occur when the end of the level 0 list is reached and the search element was never encountered. At any point during the search if the end of a list (one of the level lists in the skip list) is reached or an element is encountered with a value greater than the search element, the search is restarted from the node preceding the one too large element just encountered , but this time, on the next level down.

Consider a search for the value 16 in the irregular skip list shown in Figure 5. The search begins at the head (root) node in the highest level list (level 3 in this case), so the first node which is compared contains the value 38. Since this is larger than the search value, the search returns to the predecessor node of 38, which in this case is the head node of the list, and drops down to the next level list (level 2) and begins again. This time the search first encounters the node containing element 9 followed by the node containing element 18. Since 18 is again larger than the search value, the search returns to the predecessor of 18, which is 9 and then drops into the next lower level list (level 1) and begins to search again, starting from the node containing element 9 using the level 1 list. This time, the search encounters the nodes containing 10 and then 18 again. At this point, since 18 is larger than the search element, the search reverts to the predecessor of the node containing 18, which is 10 and drops into the next level list, which is level 0 and begins to search again. This time, the search encounters the nodes containing 14 followed again by 18. Since the search is now in the lowest level list, when the node containing 18 is encountered, the search successfully terminates and returns the fact that a node containing element 16 does not exist in this list.

An algorithm to search a regular skip list is shown below:

The expected time to search for an element within a regular skip list is O(log2 n). Therefore, searching a regular skip list has the same expected time bound as a binary search.

Insertion and Deletion in a Regular Skip List
While searching a regular skip list is expected to be an efficient operation, the design of skip lists can lead to very inefficient insertion and deletion techniques. To insert a new element into the skip list, all the nodes which are successors of the node just inserted will need to be restructured; the number of reference fields and the value of those references will need to be changed. This can be such a large problem that it is quite common to allow the regular skip list to degenerate into an irregular skip list rather than attempt to maintain the regularity of the original skip list as the restructuring is simply too costly. However, care must be taken when a new node is to be inserted that the relative number of nodes on the different levels is maintained, otherwise, the expected value for the search time will tend to drift away from the expected time and begin to approach linear time, particularly, if insertions occur only in the level 0 list and not at the appropriate higher levels in the structure.

Using the technique of allowing a regular skip list to become an irregular skip list upon insertion of a node does not require the restructuring of the list, only the new node requires links to its successor nodes. However, nodes must be generated in such a way that the distribution of nodes on different levels is kept adequate to maintain the logarithmic time bound for searching. In other words, we want the irregular skip list to be as close as possible to a regular skip list and not otherwise. The question is how to do this. Consider the following technique:

Assume that we have a skip list with a maximum_level = 4 (see Figure 5). Suppose that the list under consideration currently contains fewer than15 elements (this means that there is room for expansion of this list without increasing the number of levels in the list). The required number of nodes on level 1 would be 8 (remember that level 1 contains only half the number of nodes in level 0). The required number of nodes on level 2 would be 4, level 3 would contain 2 and finally, level 4 would contain a single node. AS insertions occur to the list we want to maintain this distribution of nodes between the various levels while relaxing the restriction the equally spaced skips of the original regular skip list. Every time a new node is inserted into the list, a random number rand_num between 1 and 15 is generated, and if rand_num < 9, then a node at level 1 is inserted. If rand_num < 13, a node on level 2 is inserted, and if rand_num < 15, a level 3 node is inserted, and finally if rand_num = 15, then a node at level 4 is generated and inserted.

	rand_num
	Level of node to be inserted (-1)
	possible occurrences

	7
	3
	1

	5-6
	2
	2

	1-4
	1
	4

Table 1 – Illustration of random numbers used to select level of new node (up to 7 nodes)

	rand_num
	Level of node to be inserted (-1)
	possible occurrences

	15
	4
	1

	13-14
	3
	2

	9-12
	2
	4

	1-8
	1
	8

Table 2 – Illustration of random numbers used to select level of new node (up to 15 nodes)

	rand_num
	Level of node to be inserted (-1)
	possible occurrences

	31
	5
	1

	29-30
	4
	2

	25-28
	3
	4

	17-24
	2
	8

	1-16
	1
	16

Table 3 – Illustration of random numbers used to selected level of new node (up to 31 nodes)

Consider the following example:

Assume the skip list currently contains 5 elements. At this point the skip list represented is a regular skip list and contains less than the maximum number of nodes for a regular skip list represented in three levels. Thus, there is room to insert into this list without increasing the depth of the structure. The depth will not need to increase until 3 < (log n(+ 1.

Initial skip list (regular)

Now assume a new node containing element value 65 is to be inserted in the list In order to determine the level of the node that will contain element 65, we generate a random number between 1 and 7. Using Table 1 above, we can determine, given the random number that is generated which level node is to be constructed to hold the new element value 65. Let’s suppose that the random number we generated was a 5. This implies that a level 1 node will be constructed to house the element 65. This is reflected in the following diagram:

Skip list after insertion of element 65 at level 1

Notice that because of the value of the node which was just inserted that the skip list is still regular at this point. To illustrate when the list becomes irregular consider the following insertion of the element value 62. The way the list is currently structured, there is already a level 2 node (40), therefore another level 2 node cannot exist, similarly, there are now two level 1 nodes and this is also the maximum number of level 1 nodes that can exist in this structure. Therefore, only a level 0 node can be generated to hold the new element value 62. This is illustrated in the diagram below:

Skip list after insertion of element 62 at level 0

Notice that after this last insertion the skip list has become irregular.

Deletion of a node from a regular skip list also has the potential to render the resulting skip list irregular. As was the case with insertion, it is too costly to restructure the resulting skip list so that it remains regular. Therefore, as with insertion, deletion will commonly result in a regular skip list becoming irregular. To illustrate this, consider the regular skip list shown in Figure 4 (repeated below):

(Figure 4 repeated) – Regular skip list of 7 nodes

Suppose that the node containing element 30 is deleted from this list to produce the following list:

Notice that the list shown above is no longer regular since the level 1 node containing element 24 has as its successor node in level 1 a node which is only one node removed from node 24 and it should have a successor node which is two nodes away when referring to level 0 nodes (notice that it is not possible for the level 0 list to ever become irregular). Subsequent deletion of the node containing element 24 causes the list to become even more irregular at both level 1 and level 2. This is illustrated in the next diagram:

Next, let’s assume that the node containing 20 is deleted to produce the following irregular skip list:

At this point, notice that all searches in this list for elements whose value is less than 40 will terminate without finding the value, all in the same time, regardless of the search value.

To carry our example to the extreme, let’s assume that the nodes containing elements 60, 75, and 89 are all subsequently deleted, which will produce the following skip list.

When carried to this extreme, all searches for any value other than 40, will execute in exactly the same time, which should be obvious since the list contains only a single element. However, notice that since the technique we have employed for deletion has not restructured the list, the node containing element 40 has not “collapsed” into a level 0 node, but rather is still represented as a level 2 node. This is clearly costly both in terms of the storage space required for the remaining node, as well as for the cost of a search which still operates as before, beginning on the highest level and moving downward.

The above discussion on the efficiency of insertion and deletion in a skip list brings us to the following point. The entire reason for implementing a skip list is to reduce the cost of a search from the linear time bound of a sequential search of the list to the expected logarithmic time bound that we illustrated should exist with the skip list structure. The implication of this is that our application, whatever that might be, will predominantly search the list and make relatively few if any insertions or deletions from the list. In other words, the contents of the list are expected to remain fairly static. Given this scenario, we can conclude that the skip list structure is a reasonable structure to support such efficient searching activities. It has been shown by various researchers that the expected performance of a skip list is comparable with more sophisticated data structures such as self-adjusting or AVL trees and as such represents a viable alternative to such structures.

An Efficient Implementation of a Node in a Skip List
The simplest way to construct a node for a skip list is to have each node contain a number of reference fields which is equal to the maximum level of the skip list. For example, in Figure 4, the list has a maximum level of 3 (levels 0,1,2, and 3) and therefore each node in the structure will have four reference fields. This technique is too wasteful of space, since each of the n nodes on level 0 require only a single reference field, further each of the node on level 1, which contains half the number of nodes that appear on level 0, require only 2 reference fields, and so on.

In reality, each node requires only the number of reference fields which corresponds to the level of the node. To accomplish this, the next field of each node is not a reference to the next node, but rather to an array of reference(s) to the next node(s). The size of this array is determined by the level of the node. Thus, all level 0 nodes refer to an array of size 1, all level 1 nodes refer to an array of size 2, all level 2 nodes refer to an array of size 3, and so on.

Introduction to Self-organizing Lists
The justification for skip lists was motivated by the desire to decrease the expected search time in an n element ordered linear list to O(log n). The basic requirement to justify the use of the skip list is that the pattern of searching is assumed to be random. In other words, having searched for a specific element within the list, the next search is expected to be a random “distance” from the previous search element. There is no expected correlation between any two search elements. However, in many search based applications there is a correlation between search elements. This is an adaptation of the “principle of locality”. Basically this means that once an element is searched for and found, chances are high that it will be searched for again in the near future. There are many different ways that self-organizing lists can be organized; we’ll look at four of the more common approaches in this section of the notes.

Organization Methods for Self Organizing Lists
Four of the more common methods for the organization protocol in self-organizing lists are:

1. Move-to-front method: After locating the search element it is moved to the logical front of the list.

2. Transpose method: After the search element is located, it is swapped with its predecessor element.

3. Count method: The order of the elements in the list is maintained based upon the number of times the element is referenced.

4. Ordering method: The order of the list is maintained using some criteria which is pertinent to the information maintained in the list. In other words, some natural ordering of the data based upon some search protocol.

We’ll examine each of these organizational methods separately, however there are some similarities than run across all of the methods. For example, in the first three methods, all new nodes are inserted into the end of the list (logical and physical end), while in the fourth method a new node is inserted into the list at whatever point is appropriate for the search protocol that is employed. With the first three methods, elements most likely to be the search element are positioned physically near the beginning of the list, most explicitly with the move-to-front method and most cautiously with the transpose method.

Next, we’ll look at each of these four methods is some detail, then do some analysis on the expected performance of the various methods.

Move-to-front Method
To illustrate the move-to-front method, consider the list shown in Figure 1:

Figure 1 – Singly-linked list – ordered in terms of move-to-front organization

Now assume that an access has occurred to this list in terms of a search for element “C”. This access will cause the list to reorganize into the one shown in Figure 2.

Figure 2 – Reorganized list after access to node “C” using move-to-front organization

If the next access happens to be a search for element “A”, the list will reorganize into the one shown in Figure 3.

Figure 3 – Reorganization of list in Figure 2 after access to element “A”

After some time has elapsed, in terms of the number of accesses to the list, the nodes of the list will be ordered from the most recently accessed node to the least recently accessed node. [Application: Ordering page frames based upon the least recently accessed page frame is a common page replacement strategy employed by operating systems in a virtual memory environment.]

The move-to-front method is a very “optimistic” appraoch to the organization of the list in the sense that the expectation is that the element on the head of the list will be searched for again in the immediate future. We’ll discuss the access patterns a bit later, but for now let it suffice to say that, such a technique is clearly not optimal if the search pattern is truly random.

Transpose Method
To illustrate the transpose method, consider the list shown in Figure 4:

Figure 4 – Singly linked list – initial state

Suppose that the list in Figure 4 is accessed in a search for the element “D”. The list shown in Figure 5 results when the list is organized using the transpose method.

Figure 5 – List of Figure 4 after access of node “D” using transpose organization

Notice that the node just accessed has moved closer to the head of the list, but has not moved as drastically toward the head as was the case with the move-to-front method. The transpose method is a much more pessimistic approach to the reorganization. In other words, it will take repeated accesses to element “D” to literally move it to the head of the list. This approach, while still adhering to the principle of locality, does so much more cautiously (or pessimistically) since it will literally take many consecutive references to move an element to the head of the list if it is far away from the head initially. Over a period of time, the list will be ordered so that the most frequently accessed elements will tend to be positioned toward the head of the list while the less frequently accessed elements will tend to be positioned toward the tail of the list. [Application: As before, a common page replacement strategy is to replace pages which are among the less frequently accessed pages.]

Count Method
Although quite similar in many ways to the first two organizational methods, the count method requires that a counter be associated with each element in the list which records the number of accesses to that element. The list is maintained in the order of most number of accesses down to the least number of accesses. In the event of a tie between two or more elements with the same number of accesses, the tie is typically broken arbitrarily.

Figure 6 – Singly linked list ordered in terms of the count of references to a node

Figure 7 – List of Figure 6 after access to element C

Figure 8 – List of Figure 7 after an access to element C

After a suitable period of time the list has become organized in a fashion that places the most frequently access elements near the head of the list and the least frequently accessed elements near the tail of the list.

Ordering Method
This organizational method is the most flexible of the four organizational methods we are considering and as such will also prove the most difficult to analyze with any generality. The organizational criteria for this method can be any which are suitable for the data/information maintained in the list. For example, the order of the list shown in Figure 9 appears to be simply alphabetical while the list in Figure 10 is ordered based upon GPA.

Figure 9 – Singly linked list ordered alphabetically

Figure 10 – Singly linked list ordered based upon decreasing GPA

 a node

Maintaining a list of elements based upon what is typically a “non-key” value is a common database problem in the construction and maintenance of non-key index structures.

Insertions into Self-Organizing Lists
Before we get to the analysis of the various forms of the self-organizing lists, we’ll look at the insertion technique for each of the four organizational methods.

Insertion with Move-to-front, Transpose, and Count Methods

Figure 11 – Singly linked list – initial state

Assuming that the list in Figure 11 is organized using either the move-to-front, transpose, or count methods a search for the element containing “K” would, in each case the resulting list would be configured as shown in Figure 12.

Figure 12 – List of Figure 11 after search for “K” using any one of the organizational

 methods of move-to-front, transpose, or count.

Insertion using Ordering Method
In this case the location for the insertion is dependent upon the ordering criteria upon which the list is ordered. Using the example from Figure 10 in which the list was ordered based upon a student’s gpa, the insertion of a new student named Mark with a gpa of 3.99 would result in the list shown in Figure 13.

Figure 13 – List of Figure 10 reorganized after the insertion of new student (Mark, 3.99)

Analysis of Self-Organizing Lists
Analysis of the efficiency of self-organizing lists operating under one of these four organizational methods is customarily done by comparing their efficiency to that of optimal static ordering. In an optimal static ordering, all data is ordered by the frequency of occurrence in the body of data so that the list is used only for searching and not for inserting new data. With this approach, two passes through the body of data are required, one to build the list and another to use the list for searching alone.

What follows in this section has been excerpted primarily from the two references listed above (as well as some other references) and essentially amounts to experimental measurements of the efficiency of the self-organizing lists as a comparison of the actual number of comparisons to the maximum number of possible comparisons. This latter number is determined by adding the lengths of the list at the moment of processing the search element. To illustrate this evaluation technique, we’ll use the information represented in Table 1 which incorporates a specific access pattern of searching against that list. Since the list is initially empty, it must be first constructed based upon the pattern of searches. In addition to the four self-organization methods, we’ll also keep track of the structure of the list as if it were ordered based simply on the order of insertion of new elements (i.e., not self-organizing).

	Search Element
	List Length

Prior to

Search
	Simple List
	Self-Organization Method

	
	
	
	Move-to-front
	Transpose
	Count
	Ordering

	A
	0
	A (0)
	A (0)
	A
	A
	A

	C
	1
	A C (1)
	A C (1)
	A C
	A C
	A C

	B
	2
	A C B (2)
	A C B (2)
	A C B
	A C B
	A B C

	C
	3
	A C B (2)
	C A B (2)
	C A B
	C A B
	A B C

	D
	3
	A C B D (3)
	C A B D (3)
	C A B D
	C A B D
	A B C D

	A
	4
	A C B D (1)
	A C B D (2)
	A C B D
	C A B D
	A B C D

	D
	4
	A C B D (4)
	D A C B (4)
	A C D B
	D C A B
	A B C D

	A
	4
	A C B D (1)
	A D C B (2)
	A C D B
	A D C B
	A B C D

	C
	4
	A C B D (2)
	C A D B (3)
	C A D B
	C A D B
	A B C D

	A
	4
	A C B D (1)
	A C D B (2)
	A C D B
	A C D B
	A B C D

	C
	4
	A C B D (2)
	C A D B (2)
	C A D B
	A C D B
	A B C D

	C
	4
	A C B D (2)
	C A D B (1)
	C A D B
	C A D B
	A B C D

	E
	4
	A C B D E (4)
	C A D B E (4)
	C A D B E
	C A D B E
	A B C D E

	E
	5
	A C B D E (5)
	E C A D B (5)
	C A D E B
	C A E D B
	A B C D E

Table 1 – Illustration of the four self-organization methods

Notice in Table 1 that the access pattern to the list is a specific one, namely: A, C, B, C, D, A, D, A, C, A, C, C, E, E consisting of 14 letters, 5 of which are different. The length of the list prior to processing the search element is shown in the second column, the sum of these numbers is 46. This number is used to compare the number of all made comparisons to this combined length. Using this technique we can determine what percentage of the list was scanned during the entire process. For all of the lists except optimal ordering this combined length is the same; only the number of comparisons can change. For example, when using the move-to-front method, 0+1+2+2+3+2+4+2+3+2+2+1+4+5 = 33 comparisons were made (the number of comparisons made using the different organization strategies is shown in parenthesis at the end of the lists in Table 1), which is 71.7% when compared to 46. [33/46 * 100 = 71.7%] Notice that the number 46 represents the worst case scenario, the combined length of intermediate lists every time all the nodes in the list are compared. Plain search, with no reorganization, requires 30 comparisons, which is 65.2%. [30/46 * 100 = 65.2%] For practice, you should determine the efficiency, using this technique for the transpose, and count methods of organization.

The sample data shown in Table 1 is in agreement with theoretical analyzes which indicate that count and move-to-front methods are, in the long run, at most twice as costly as the optimal static ordering; the transpose method approaches, in the long run, the cost of the move-to-front method. In particular, using amortized analysis, it can be proven that the cost of accessing a list element with the move-to-front method is at most twice the cost of accessing this element on the list that uses optimal static ordering. The basics of this proof follow:

The proof of the statement above uses the concept of inversion. For two lists containing the same elements, an inversion is defined to be a pair of elements (x,y) such that in one of the lists x precedes y and in the other list y precedes x. For example, the list [C, B, D, A] has four inversions with respect to the list [A, B, C, D], which are: (C,A), (B,A), (D,A), and (C,B). (Recall that the same concept was used in CS2 when we discussed the various sorting algorithms that operated on the basis of removing inversions.) The amortized cost is defined to be the sum of the actual cost and the difference between the number of inversions before accessing an element and after accessing it,

amCost(x) = cost(x) + (inversionsBefore Access(x) – inversionsAfterAccess(x))

To determine this value, consider an optimal list OL = [A, B, C, D] and a move-to-front list MTF = [C, B, D, A]. The access of elements usually changes the balance of inversions. Let displaced(x) be the number of elements preceding x in MTF but following x in OL. For example, displaced(A) = 3, displaced(B) = 1, displaced(C) = 0, and displaced(D) = 0. Displaced(A) = 3 since in MTF elements C, B, and D precede A and in OL these elements follow A. Similarly, displaced(B) = 1, since in MTF the element C precedes B yet C follows B in OL; displaced(C) = 0 since in MTF no elements precede C; displaced(D) = 0 since although elements C and B precede D in MTF, no elements follow D in OL.

Let posMTF(x) be the current position of x in MTF, then posMTF(x) – 1 – dis-placed(x) is the number of elements which precede x in both lists. For D, this value will be 2 , and for all other elements this value will be 0. (posMTF(D) – 1 – displaced(D) = 3 – 1 – 0 = 2; posMTF(A) – 1 – displaced(A) = 4 – 1 – 3 = 0; posMTF(C) – 1- displaced(C) = 1 – 1 – 0 = 0; posMTF(B) – 1 – displaced(B) = 2 – 1 – 1 = 0).

Now, accessing an element x and moving it to the front of MTF creates a total of posMTF(x) – 1- displaced(x) new inversions and removes a total of displaced(x) inversions. The amortized time to access x becomes:

amCost(x) = posMTF(x) + posMTF(x) – 1 – displaced(x) – displaced(x)

= 2 (posMTF(x) – displaced(x)) – 1

where cost(x) = posMTF(x).

Accessing element A transforms MTF = [C, B, D, A] into [A, C, B, D] and amCost(A) = 2(4 – 3) – 1 = 1.

Accessing element B transforms MTF = [C, B, D, A] into [B, C, D, A] and amCost(B) = 2(2 – 1) – 1 = 1.

Accessing element C transforms MTF = [C, B, D, A] into [C, B, D, A] and amCost(C) = 2(1 – 0) – 1 = 1.

Accessing element D transforms MTF = [C, B, D, A] into [D, C, B, A] and amCost(D) = 2(3 – 0) – 1 = 5.

Notice however, that the common elements which precede x on the two lists cannot exceed the number of all elements preceding x on OL; therefore it must be that: posMTF(x) – 1 – displaced(x) (posOL(x) – 1, so that we have:

amCost(x) (2posOL(x) – 1
The amortized cost of accessing an element x in MTF is in excess of posOL(x) – 1 units to its actual cost of access in OL. This excess is used to cover an additional cost of accessing elements in MTF for which posMTF(x) > posOL(x), that is, elements that require more accesses in MTF than in OL.

It is important to remember that the amortized costs of single operations are meaningful only in the context of sequences of operations. The cost of an isolated operation will seldom equal its amortized cost; however, in a sufficiently long sequence of accesses, each access on the average will take at most 2pos(x) – 1 time. Table 2 illustrates the performance of self-organizing lists with data taken from actual experimental results. The first two columns of numbers are based upon data from programs and the remaining columns represent straight English text. Except for alphabetic ordering, all the methods improve their efficiency as the size of the list increases. The move-to-front and count methods are essentially the same in their efficiency, and both outperform the transpose, plain, and ordering methods. The poor performance for smaller lists is due to the fact that all of the methods are busy including new elements into the lists, which requires an exhaustive search of the list. Later, the methods will concentrate on the reorganization geared toward reducing the cost of subsequent searches.

Table 2 also contains data for the skio list. Notice the overwhelming difference in the efficiency of the skip list compared to any of the self-organizing list techniques. This is to some extent misleading due to the way the data is presented in Table 2. In Table 2, only comparisons of data are included with no indication of any other operations required to execute the analyzed methods. In particular, there is no indication of how many references are used and “relinked” (the “backtracking” that occurs in the movement through the hierarchy of lists that comprise the skip list). If this information were included, the difference between the various self-organizing methods and the skip list would be less dramatic that it appears in Table 2.

	Different Words/ All Words
	Type of data in the List

	
	Program data
	English Text

	Reorganization Strategy
	149/423
	550/2847
	156/347
	609/1510
	1163/5866
	2013/23065

	Optimal
	26.4
	17.6
	28.5
	24.5
	16.2
	10.0

	Plain
	71.2
	56.3
	70.3
	67.1
	51.7
	35.4

	Move-to-Front
	49.5
	31.3
	61.3
	54.5
	30.5
	18.4

	Transpose
	69.5
	53.3
	68.8
	66.1
	49.4
	32.9

	Count
	51.6
	34.0
	61.2
	54.7
	32.0
	19.8

	Alphabetic Order
	45.6
	55.7
	50.9
	48.0
	50.4
	50.0

	Skip List
	12.3
	5.5
	15.1
	6.6
	4.8
	3.8

Table 2 – Efficiency of Self-organizing lists using (number of data comparisons)/(combined length) expressed as a percentage.

Summary
As the data in Table 2 suggests, empirical results indicate that for lists of modest size, the generic linked list suffices. With an increase in the amount of data and/or an increase in the frequency with which list elements need to be accessed, more sophisticated methods and data structures will be required.

COP 3502H (Advanced List Structures (Day 16)

20

24

30

40

60

75

80

80

75

60

40

30

24

20

80

75

60

40

30

24

20

4

7

9

10

14

18

23

26

38

41

80

75

60

40

30

24

20

search_regular_skip_list (element searchval)

 p = the nonnull list on the highest level i;

 while (searchval notfound and i > 0)

 { if p.key < searchval

	 p = a sublist that begins in the predecessor of p on level --i;

	else if p.key > searchval

	 if p is the last node on level i

		 p = a nonnull sublist that begins in p on the highest level < i;

		 i = the number of the new level;

	 else p = p.next;

 }

For practice, use the regular skip list of Figure 4 to determine the nodes “visited” when searching for a node containing the element:

65

75

80

40

Answer part (a): header, 40, tail, 40, 75, 40, 60, 75 – search terminates, element not found

Answer part (b): header, 40, tail, 40, 75 – search terminates, element found

Answer part (c): header, 40, tail, 40, 75, tail, 75, 80 – search terminates, element found

Answer part (d): header, 40 – search terminates, element found

80

75

62

65

24

60

40

30

20

65

60

40

30

24

60

40

30

20

24

20

60

40

30

24

20

80

75

60

40

80

24

20

75

60

40

80

20

75

60

40

A

B

40

C

D

E

C

A

B

D

E

A

C

B

D

E

A

B

C

D

E

A

B

D

C

E

4

A

2

B

1

C

1

D

1

E

4

A

2

B

2

C

1

D

1

E

4

A

3

C

2

B

1

D

1

E

A

B

C

D

E

4.0

Keri

3.97

DebiC

3.82

Bill

3.31

Don

2.95

Erin

gpa

name

M

A

Z

B

E

M

A

Z

B

E

K

3.99

Mark

3.97

DebiC

3.82

Bill

3.31

Don

2.95

Erin

4.0

Keri

Advanced List Structures - 20

