[image: image3.png]=86 4105 3220

186410 5370
6 4 10 53 A
6 4 10 3 3 2 22
8 4 10 5y =2
E46 810 e

28 A5 =6-8-1022

Introduction

Before we go any further into exploring algorithms that handle searching and sorting you need to be sure that you can trace the execution of an algorithm (code) in order to understand how the algorithm performs its operations. The first section of these notes deals with tracing code and showing a technique for doing it thoroughly.

Tracing Code Review
How do you determine if an algorithm is correctly solving the problem for which it was designed? How do you know that the decisions that algorithm makes are the correct ones? As an algorithm designer you must learn the art of code tracing. In other words, you must act just like a computer and execute the algorithm in the same step-by-step fashion by which the computer will execute the problem. To do this correctly, you cannot impose your knowledge of the problem or the design of the algorithm on the execution process. In other words, don’t try to see your way to the solution or skip some of the steps that the algorithm will make because you can tell what’s going to happen. This is a sure-fire way to develop an algorithm which will not be correct. In order to properly trace the execution of an algorithm you must act like a computer and on a sheet of paper draw a box for each variable which is declared in the algorithm. The set of boxes that you construct will play the role of the computer memory in your trace. As the values in the boxes change due to the execution of statements in the algorithm you are reflecting the changes of state that occur in the computer’s memory as the algorithm executes. Begin by executing the statements of the algorithm in exactly the same manner that the computer would execute them and maintaining the state of the memory by correcting changing the values of the variables in their corresponding boxes. At the end of the execution of the algorithm, the values in the boxes will reflect the final state of the memory and thus the final values in each of the variables. As the trace is performed all I/O operations are effected just as the computer would do. Thus, read statements will consume input values and make the corresponding assignments while print statements will produce the output of the algorithm as it executes. Below are the final set of examples in this set of notes which give examples of tracing the execution of algorithms.

Example 1
In the algorithms below the numbers preceding each line are for reference purposes only and are not part of the algorithm.

1 void main () {

2
int numbers [10];

3
int i, k, total;

4
//read in the numbers

5
for (i=0; i<=9; i++)

6 {

7

printf(“Enter your number:\n”);

8

scanf(“%d”, &numbers[i]);

9
}

10
//sum the numbers

11
total = 0;

12
for (k=0; k <=9; k++)

13
{

14

total = total + numbers[k];

15
}

16
printf(“The sum of your numbers is: %d .\n“, total);

17 }

The trace
Suppose the input is: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Statements 1 through 4 are either comments or defining variables

Statement 5 begins a loop which ends at line 9 – which does the following:

	iteration
	line 5
	line 6
	line 7

	1
	i = 0
	Enter your number
	numbers[0] = 2

	2
	i = 1
	Enter your number
	numbers[1] = 4

	3
	i = 2
	Enter your number
	numbers[2] = 6

	4
	i = 3
	Enter your number
	numbers[3] = 8

	5
	i = 4
	Enter your number
	numbers[4] = 10

	6
	i = 5
	Enter your number
	numbers[5] = 12

	iteration
	line 6
	line 7
	line 8

	7
	i = 6
	Enter your number
	numbers[6] = 14

	8
	i = 7
	Enter your number
	numbers[7] = 16

	9
	i = 8
	Enter your number
	numbers[8] = 18

	10
	i = 9
	Enter your number
	numbers[9] = 20

Graphically, when the loop on line 6 terminates, the “memory” looks like:

numbers array

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	value
	2
	4
	6
	8
	10
	12
	14
	16
	18
	20

[image: image4.png]=86 4105 3220

186410 5370
6 4 10 53 A
6 4 10 3 3 2 22
8 4 10 5y =2
E46 810 e

28 A5 =6-8-1022

total

i

 k

All of total, i, and k are undefined at this point in the algorithm

Statement 10 is a comment

Statement 11: assigns total the value of 0

Statement 12 begins a for-loop that ends at statement 15

	iteration
	line 12
	line 13

	1
	k = 0
	total = 0 + 2 = 2

	2
	k = 1
	total = 2 + 4 = 6

	3
	k = 2
	total = 6 + 6 = 12

	4
	k = 3
	total = 12 + 8 = 20

	5
	k = 4
	total = 20 + 10 = 30

	6
	k = 5
	total = 30 + 12 = 42

	7
	k = 6
	total = 42 + 14 = 56

	8
	k = 7
	total = 56 + 16 = 72

	9
	k = 8
	total = 72 + 18 = 90

	10
	k = 9
	total = 90 + 20 = 110

Loop terminates.

Statement 16 prints: The sum of your numbers is: 110.

The final state of the memory looks like the following:

Numbers array

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	value
	2
	4
	6
	8
	10
	12
	14
	16
	18
	20

total

i

 k

i is undefined

Example 2
Assume that we have an array named X which contains the values shown below. What are the values in every variable that appears in this algorithm after the loop has completed? Determine your answers by tracing the algorithm’s execution.

Array X

	index
	0
	1
	2
	3
	4
	5

	value
	4
	2
	6
	1
	5
	3

0 void main () {

1 int a = 0, b = 0;

2 int i= 0, j= 5;

3
do

4

if (X[i] < X[j]){

5

b = b + X[j];

6

j = j – 1;

7

}

8

else {

9

a = a + X[i];

10 i = i + 1;

11

}

12
while (i <= j);

13 }

Statements 1 and 2 effect the following:

a

 b

i

j

enter loop at statement 3

statement 4: test is: (X[0] < X[5]) (4 < 3?) evaluation is FALSE

statement 9:

a

a = a + X[0]

statement 10:

i

i (i + 1

statement 12: exit condition tested: (i <= j) (1 <= 5?) evaluation is TRUE

loop iterates second time:
statement 4: test is (X[1] < X[5]) (2 < 3?) evaluation is TRUE

statement 5:

b

b (b + X[5]

statement 6:

j

j (j - 1

statement 12: exit condition tested: (i <= j) (1 <= 4?) evaluation is TRUE

loop iterates third time:

statement 4: test is (X[1] < X[4]) (2 < 5?) evaluation is TRUE

statement 5:

b

b (b + X[4]

statement 6:

j

j (j – 1

statement 12: exit condition tested: (i <= j) (2 <= 3?) evaluation is TRUE

loop iterates fourth time:

statement 4: test is (X[1] < X[3]) (2 < 1?) evaluation is FALSE

statement 9:

a

a (a + X[1]

statement 10:

i

i (i + 1

statement 12: exit condition tested: (i <= j) (2 <= 3?) evaluation is TRUE

loop iterates fifth time:

statement 4: test is (X[2] < X[3]) (6 < 1?) evaluation is FALSE

statement 9:

a

a (a + X[2]

statement 10:

i

i (i + 1

statement 12: exit condition tested: (i <= j) (3 <= 3?) evaluation is TRUE

loop iterates sixth time:

statement 4: test is (X[3] < X[3]) (1 < 1?) evaluation is FALSE

statement 9:

a

a (a + X[3]

statement 10:

i

i (i + 1

statement 14: exit condition tested: (i <= j) (4 <= 3?) evaluation is FALSE

loop terminates

The final values in the variables are:

Array X remains unchanged

a

 b

i

j
Did you get these final values when you traced the algorithm’s execution? If you did, congratulations! you’ve successfully traced the execution of the algorithm. If you didn’t, try it again and this time be more careful! A common mistake when tracing algorithm execution is to use an array index as the value in the array rather than the value that is at that index position in the array. Perhaps this is where you made your mistake, so try it again.

Alternate way of Tracing Code
Example 1 Again
In the algorithms below the numbers preceding each line are for reference purposes only and are not part of the algorithm.

The trace
Suppose the input is: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Statements 1 through 4 are either comments or defining variables

Statement 5 begins a loop which ends at line 9 – which does the following:

Graphically, when the loop on line 6 terminates, the “memory” looks like:

numbers array

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	value
	2
	4
	6
	8
	10
	12
	14
	16
	18
	20

total

i

 k

All of total, i, and k are undefined at this point in the algorithm

Statement 10 is a comment

Statement 11: assigns total the value of 0

Statement 12 begins a for-loop that ends at statement 15

Loop terminates.

Statement 16 prints: The sum of your numbers is: 110.

The final state of the memory looks like the following:

Numbers array

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	value
	2
	4
	6
	8
	10
	12
	14
	16
	18
	20

total

i

 k

i is undefined

Example 2

a

 b

i

j

The final values in the variables are:

Array X remains unchanged

a

 b

i

j
Searching

Searching is a fundamental operation to which computers are applies every day. As we saw last time, searching an array of elements when the array is unsorted requires us to examine, on the average, half of the elements in the array to find the search element.

Sequential Search
· Does not require the array (or in general, the search space) to be sorted.

· “Brute-force” searching technique.

	Sequential Search

	best case
	need to look at only 1 element
	O(1)

	average case
	need to look at ½ the elements
	O(N)

	worst case
	need to look at all n elements
	O(N)

Binary Search
· An application of the “divide and conquer” strategy.

· Requires the array (search space) to be sorted.

· Basic technique is to compare the search element with the element which is in the middle of the search space and then to restrict further searching into the appropriate half of the search space (this can be done because the search space is sorted). Then at each step, the process is repeated (cutting the remaining search space in half at each step) until either the search element is found or we’ve run out of elements to compare and the element was not in the search space.

	Binary Search

	best case
	need to look at only 1 element
	O(1)

	average case
	need to look at log2(n) elements
	O(log2 n)

	worst case
	need to look at log2(n)+1 elements
	O(log2 n)

Binary Search Algorithm
· Several slightly different versions of the binary search can be written.

· Loop invariant: The search value (sometimes called the target value), provided it is present in the search space will be found between the indices low and high inclusively.

· Termination condition: Either the target value is found or at most one item is left in the array to be search. Initially, low index = 0, and high = Size – 1. The loop should terminate whenever high <= low, provided it has not terminated earlier on a success.

Binary Search Algorithm

· When high == low, the algorithm iterates one more time.

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	value
	3
	5
	7
	9
	10
	13
	15
	17
	19
	25

Trace the algorithm if the target value is 19.

Trace the algorithm if the target value is 14.

Recursive Binary Search

Sorting
Selection Sort
Selection sort is an attempt to localize the exchanges of array elements by finding a misplaced element first and putting it in its final place. The element with the lowest value is selected and exchanged with the element in the first position. Then for the remaining elements the smallest value is found and interchanged with the second position in the array, and so on.

Example – Selection Sort

Initial array

	7
	5
	2
	3
	1
	4
	6

First swap produces (underlined cells indicate sorted portion of the array)

	1
	5
	2
	3
	7
	4
	6

Second swap produces

	1
	2
	5
	3
	7
	4
	6

Third swap produces

	1
	2
	3
	5
	7
	4
	6

Fourth swap produces

	1
	2
	3
	4
	7
	5
	6

Fifth swap produces

	1
	2
	3
	4
	5
	7
	6

Sixth swap produces – completes sort

	1
	2
	3
	4
	5
	6
	7

Bubble Sort
A bubble sort is best envisioned with a vertical array whose smallest elements are at the top and whose largest elements are at the bottom. The array is scanned from the bottom up, and two adjacent elements are interchanged if they are found to be out of order with respect to each other. In this fashion the smallest element is bubbled to the top of the array (the first position). However, this is only the first pass through the array. The array is scanned again comparing consecutive items and interchanging them when needed. The second time however, the last comparison is done for data[2] and data[1] since the smallest element is already in position data[0]. This process continues until the last pass when only one comparison between data[n-1] and data[n-2] and the possible interchange occurs.

Example – Bubble Sort

Initial Array

	7
	5
	2
	3
	1
	4
	6

After pass 1 (sorted portion of the array shown in green)

	1
	7
	5
	2
	3
	4
	6

After pass 2 (note the change in order of the various data elements)

	1
	2
	7
	5
	3
	4
	6

After pass 3

	1
	2
	3
	7
	5
	4
	6

After pass 4

	1
	2
	3
	4
	7
	5
	6

After pass 5

	1
	2
	3
	4
	5
	7
	6

After pass 6 – sort completed

	1
	2
	3
	4
	5
	6
	7

Bubble Sort Algorithm

Insertion Sort
Insertion sort is one of the simplest sorts known. In the worst case its running time will be O(N2) – which will occur when the array to be sorted is already sorted but in the reverse order (i.e., want ascending order and array is in descending order or vice versa). An insertion sort starts by considering the first two elements of the array data, which are data[0] and data[1]. If they are out of order, an interchange takes place. Then, the third element, data[2], is considered and inserted into its proper place. If data[2] is less than data[0] and data[1], these two elements are shifted by one position: data[0] is placed at position 1, data[1] at position 2, and data[2] at position 0. If data[2] is less than data[1] and not less than data[0], then only data[1] is moved to position 2 and its place is taken by data[2]. If, finally, data[2] is not less than both its predecessors, it stays in its current position. Each element data[i] is inserted into its proper location j such that 0 (j (i, and all elements greater than data[i] are moved by one position.

Example – Insertion Sort
Initial Array

	7
	5
	2
	3
	1
	4
	6

After pass 1 (sorted portion in blue – unexamined portion in yellow)

	5
	7
	2
	3
	1
	5
	6

After pass 2

	5
	7
	2
	3
	1
	5
	6

After pass 3 (ith pass has i elements sorted)

	2
	5
	7
	3
	1
	4
	6

After pass 4

	2
	3
	5
	7
	1
	4
	6

After pass 5

	1
	2
	3
	5
	7
	4
	6

After pass 6

	1
	2
	3
	4
	5
	7
	6

After pass 7 – sort completed

	1
	2
	3
	4
	5
	6
	7

As mentioned before the worst case time for this algorithm is O(N2) but the best case time will be O(N) which occurs when the input array is already sorted in which case the inner for loop condition will fail at every test and thus it never loops leaving the outer loop to iterate N times. The average case requires a bit more analysis to determine which we will now examine.

An inversion in an array of numbers is any ordered pair (i, j) such that i<j but Ai > Aj, where i,j are index values and A is the array name. An inversion is basically any pair of numbers not in proper sorted order (assume ascending order). As an example, consider the array: {8 5 9 2 6 3}. This array contains 10 inversions which are: (8,5) (8,2) (8,6) (8,3) (5,2) (5,3) (9, 2) (9,6) (9,3) (6,3). In general, if an array contains I inversions then I swaps will be required to sort the array. Interchanging the location of the two elements in any inversion removes one inversion from the total number of inversions in the array. This can be seen (see the example array above) by interchanging the 8 and the 5 element in the example, which produces: {5 8 9 2 6 3} and the resulting array contains only nine inversions which are: (8,2) (8,6) (8,3) (5,2) (5,3) (9, 2) (9,6) (9,3) (6,3). It is important to understand what is occurring during each “pass” of this sort. The example below illustrates not only the sorting technique but identifies the inversions that are removed during each pass.

	Array Position
	Inversions Processed
	0
	1
	2
	3
	4
	5

	initial state
	
	8
	5
	9
	6
	2
	3

	after a[0..1] is sorted
	(8,5)
	5
	8
	9
	6
	2
	3

	after a[0..2] is sorted
	none
	5
	8
	9
	2
	6
	3

	after a[0..3] is sorted
	(9,2) (8,2) (5,2)
	2
	5
	8
	9
	6
	3

	after a[0..4] is sorted
	(9,6) (8,6)
	2
	5
	6
	8
	9
	3

	after a[0..5] is sorted
	(9,3) (8,3) (6,3) (5,3)
	2
	3
	5
	6
	8
	9

Insertion sort example – shaded area is the sorted portion of the array after the step

Mergesort
The mergesort sorting algorithm uses the divide and conquer strategy in which the original problem is split into two half-size, recursively solved problems. If the overhead of the base case was linear [O(N)] then the overall running time of the algorithm was O(N log2 N). The mergesort is such an algorithm and is commonly employed for external sorting. The mergesort algorithm is a recursive, subquadratic algorithm as follows:

1. if the number of items to sort is 0 or 1, return.

2. recursively sort the first and second halves separately.

3. merge the two sorted halves into a single sorted group.

Since this algorithm uses the divide and conquer strategy and employs the halving principle, we know that the sorting is done in O(log2N) and thus we need only to show that merging two sorted groups into a single sorted group can be performed in linear time to prove the running time is O(N log2 N).

A linear merge algorithm

A linear merge algorithm requires three separate arrays A, B, and C (two input and one output) plus an index counter per array (actr, bctr, and cctr). The index counters are initially set to the first position in each of their arrays with incrementation as follows:

if A[actr] < B[bctr]

C[cctr] = A[actr];

cctr++;

actr++;

} else
{

C[cctr] = B[bctr];

cctr++;

bctr++;

}

Example: Linear Merge

A

B

C

actr

 bctr

cctr

Example of a mergesort.

The mergesort is not often used as an internal sorting method. The reason is that the output array represents a linear increase in the memory requirements and additional work is required to copy the components of the arrays.

Quicksort
With an average running time of O(N log2 N), quicksort is the fastest-known sorting algorithm. Quicksort has a worst case running time of O(N2) which can be made statistically impossible to achieve. Quicksort is a recursive algorithm whose performance is easy to prove yet has a tricky implementation since slight variations in the code can make significant differences in the running time.

The quicksort algorithm is as follows:

1. Call Quicksort(A).

2. if the number of elements to be sorted is 0 or 1, return.

3. pick any element v in the array A. (this is the pivot element)

4. partition A-{v} into two disjoint groups: Left = {x(A-{v}| x (v} and Right = {x(A-{v}| x (v}.

5. Return the result of Quicksort(Left), followed by v, followed by Quicksort(Right).

Notes: base case includes possibility that the number of elements is 0 since the recursive calls may generate empty subsets. Any element can theoretically be the pivot element, although in reality the pivot element is not randomly chosen. The partitioning must be performed in place so that no additional arrays are required. Quicksort outperforms mergesort because the time required to partition the array is less than the time required to merge two arrays.

Analysis

Best Case: The partitions are always ½ the size of the input (at each recursive step) – thus by the halving principle the sorting component requires O(log2 N) and with linear overhead for the base case – we have O(N log2 N) which is equal to that of the mergesort.

Worst Case: The partitions are very lopsided, meaning that either |L| = 0 or n-1 or |R| = n-1 or 0 at each recursive step.

Suppose that T(N) is the time for Quicksort on array of N elements, Left contains no elements, Right contains all of the elements except the pivot element (this means that the pivot element is always chosen to be the smallest element in the partition), 1 time unit is required to sort 0 or 1 elements, and N time units are required to partition a set containing N elements. Then if N > 1 we have:

T(N) = T(N-1) + N

This means that the time required to quicksort N elements is equal to the time required to recursively sort the N-1 elements in the Right subset plus the time required to partition the N elements.

By telescoping the equation above we have:

 T(N) = T(N-1) + N

T(N-1) = T(N-2) + (N-1)

T(N-2) = T(N-3) + (N-2)

…

 + T(2) = T(1) + 2

T(N) = T(1) + 2 + 3 + 4 + … + N = N(N+1)/2 = O(N2)

Therefore, you never want to select a pivot element that leads to an unbalanced paritioning.

Average Case: If each partition is equally likely to contain 0, 1, 2, …, N-1 elements, then the average running time of the quicksort algorithm is O(N log2 N). More formally this is stated as:

T(Left)average = T(Right)average = [T(0) + T(1) + T(2) + … + T(N-1)]/N

T(N)average = T(Left)average + T(Right)average + N

= 2[T(Left)average] + N

= 2[[T(0) + T(1) + T(2) + … + T(N-1)]/N] + N

with manipulation you arrive at:

T(N)/(N+1) = T(N-1)/N + 2/(N+1)

Telescoping yields: T(N)/(N+1) = 2[1 + ½ + 1/3 + …+1/(N+1)) – 5/2 which is O(log2 N).

Therefore, multiplying both side by N+1 gives: T(N) = O(N log2 N)

Picking the Pivot:
 Don’t do this randomly, or by picking the first element, or even by picking the larger of the first two elements. A safe way is to set low = first element and high = last element and calculating (low+high)/2. An even better way is to pick the median of three values low, middle and high.

Lower Bound on Sorting
We have seen that quicksort has a best case performance of O(N log N). The question becomes, can we do better? The bottom line is: any algorithm that sorts which uses only element (binary) comparisons will require ((N log N) time in the worst case. This means that any algorithm that sorts by using element (binary) comparisons must use at least roughly N log N comparisons for some input sequence. This is also true for the average case performance.

Consider the problem of sorting the sequence S = {a, b, c} composed of three distinct items; that is: a (b and a (c and b (c. The figure below illustrates a possible sorting algorithm in the form of a binary decision tree. Each node of the decision tree represents one binary comparison (in each node of the tree exactly two elements are compared). Since there are two possible outcomes for each comparison, each non-leaf node in the tree will be of degree two. Suppose that a < b < c in our example. Consider how the algorithm determines this fact.

Y

N

 Y

N

 Y

 N

 Y

 N

Y

 N

A Decision Tree for Comparison Sorting

For the example, the first comparison compares a and b which will reveal that a < b (since we assumed a < b < c). The second comparison compares a and c which will determine that a < c. At this point it has been determined that a < b and a < c, yet the relative order of b and c has not yet been determined. Therefore, a third comparison is required to determine the relative order of b and c. Notice that the “algorithm” works correctly in all cases because every permutation of the sequence S appears as a leaf node in the decision tree. Furthermore, the number of comparisons required in the worst case is equal to the height of the decision tree!

Any sorting algorithm that uses binary (element) comparisons can be represented by a binary decision tree. The height of that decision tree will determine the worst case running time of the algorithm. In general, the size and shape of the decision tree depends on the particular sorting algorithm and the number of elements to be sorted.

Given an input sequence of n items to be sorted, every binary decision tree that correctly sorts the input sequence must have at least n! leaves (one for each permutation of the input). Therefore, since the maximum number of leaf nodes in a binary tree of height h is 2h, that the height of the binary decision tree is at least

[image: image1.wmf]é

ù

!

n

log

2

.

Therefore,

[image: image2.wmf]é

ù

å

å

=

=

W

=

³

³

³

³

n

1

i

2

/

n

1

i

2

2

2

2

2

)

n

log

n

(

2

/

n

log

2

/

n

2

/

n

log

i

log

!

n

log

!

n

log

Since the height of the decision tree is ((n log n), the number of comparisons done by any sorting algorithm that sorts using only binary comparisons is ((n log n). Assuming that each comparison can be done in constant time, the running time of any such algorithm is ((n log n).

1 3 4 7

1 3 4 7

1 3 4 7

2 5 9 11

1 2

1 3 4 7

2 5 9 11

1

2 5 9 11

1 3 4 7

2 5 9 11

1 2 3

2 5 9 11

1 2 3 4

13

4

3

8

5 4 3

0 1 2 3 4

0 3 8

0 4 6 12 13

110

13

4

3

8

4

13

3

12

2

6

3

8

4

3

1

4

0

Searching and Sorting

0

0

5

110

?

11

?

?

?

?

11

?

?

?

void BubbleSort (int L[], int n)

	{

	 int pass, index, temp;

	 int exchange;

	 pass = 0;

	 exchange = 1;

	 // make up to n-1 passes through the array.

	 // exit early if no exchanges are made on previous pass.

	 while ((pass < n-1) && exchange)

	 {

		exchange = 0;

		pass++;

		for (index = 0; index <= n-pass; index++)

			if (L[index] > L[index+1])

			{

				temp = L[index];

				L[index] = L[index+1];

				L[index+1] = temp;

				exchange = 1;

			}

		} //end while

	}

int RecBinarySearch(int numbers[], int target, int low, int high)

{

	int mid;

	mid = (low + high)/ 2;

 if (low > high)

		return 0;

	else if (numbers[mid] == target)

		return 1;

	else if (target < numbers[mid])

		return RecBinarySearch(numbers, target, low, mid-1);

	else

		return RecBinarySearch(numbers, target, mid+1, high);

}

int 	high, low, mid; //mid will be the index of the target if it is found

int	L[SIZE];	//the array to be searched

int 	value, found;

high = SIZE – 1;

low = 0;

found = 0;

while (!found && high >= low)

{

	mid = (high + low)/2;

	if (L[mid] == value)

		found = 1;

	else if (value < L[mid])

		high = mid –1; //reset bounds to lower half of array

	else

		low = mid + 1; //reset bounds to upper half of array

}

1 2 3 4 5

2 5 9 11

1 3 4 7

1 2 3 4 5 7

2 5 9 11

1 3 4 7

1 2 3 4 5 7 9

2 5 9 11

1 3 4 7

1 2 3 4 5 7 9 11

2 5 9 11

1 3 4 7

� EMBED PBrush ���

void MergeSort (int List[], int start, int end)

{

 int mid;

	if (start < end) {

		mid = (start + end)/2;

		MergeSort(List, start, mid);

		MergeSort(List, mid+1, end);

		Merge(List, start, mid+1, end);

	}

}

void Merge (int List[], int start1, int start2, int end2)

{

 int 	hold[end2-start1+1];

 int	index, length, count1, count2, total;

 length = start2 – start1;

 //copy values in the first half into a local array

 for (index = 0; index < length; index++)

	hold[index] = List[start1 + index];

 //counters keep track of the current elements in each of the two lists to merge

 count1 = 0;

 count2 = start2;

 total = start1;

 //loop until all values in one of the arrays have been merged into the sorted array.

 while (count1 < length && count2 < end2)

 {

	if (hold[count1] < List[count2]) {

		List[total] = List[count1];

		count1++;

	}

	else {

		List[total] = List[count2];

		count2++;

	}

	total++;

 }

 while (count1 < length)

 {

	List[total] = hold[count1];

	count1++;

	total++;

 }

 return;

}

a < c

b < c

a < c

a < b

b < c < a

a < c < b

a < b < c

b < a < c

c < a < b

b < c

c < b < a

PAGE
23
Searching and Sorting -

_1043679147.unknown

_1043679210.unknown

_1043669503

