7/22/2020 - Binary Search

Tuesday, July 7, 2020 7:52 PM

"strict" definition of a binary search is:
Given a sorted array, and a target value, determine if the target value is

in the array.

If a function f is either increasing or decreasing, and it's easy to
calculate forwards, but hard to calculate backwards, we can use binary
search to calculate backwards.

Backwards calculation is: I give you f(x), tell me which x created it.
f(x) =2x+4

This one is easy forwards and backwards...

f(3)=2x3+4=10

If I tell you the answer is 14

2x +4 =14

2x =10

x=5

So this process is easy for this specific function...

But there are other functions were it's a hard process, but we can

calculate forwards easily, and the function is either increaging or
decreasing. \

\U)\) L, &)
(o) ’:(\ hah =<p
)V\m)izéﬁ/
(D\/\J‘Zé/,é %t7%/§é)

O\W SQ (WWF\@

s D

—

Real Valued Binary Searches

1. Now, I write these with a for loop either 50 or 100 iterations. (Reason float
pt error with the comparison may yield an infinite while loop if you keep on
going until some fine precision point.)

(The while loop way would be something like while (high-low>1e-6)
2. mid = (low-+high)/2 using real number division
3. compare f(mid) to target, afterwards setting either low=mid or high=mid

4. Make sure that low is below the real answer and high is above the real
answer

5. Make sure that the initial value of low and high don't cause any weird
problems when plugged into the function. (Problems could be things like
integer overflow, sqrt of negative, arccos of a value greater than 1, etc.)

Careful Approach Summary

Several planes landing on the same runway. (At most 8 planes.)

Each plane has some range of time it can land based on its flight path,
fuel etc.

P1 5-15

P2 20-50
P3 10-25
P4 30-40
PS5 25-45

Goal is to maximize the smallest gap between landing times.
Here is a possible schedule

P15

P3 15
P2 25
P4 35
PS5 45

Gaps are 10, 10 10 and 10. The smallest of these is 10.
P15

P2 22

P3 25

P4 38

PS5 45

Gaps are 17, 3, 13, and 7. The smallest of these is 3. This is worse than
the first schedule.

Greedy approaches tend to run into problems here.
Maybe, let's approach an easier question...

Let's say we were told which order to land the planes. So let's say
someone told us You must land them in this order:

P1, P3, P2, P5 and P4

P1 5-15

P3 10-25
P2 20-50
PS5 25-45
P4 30-40

Easy to see we want to land P1 at 5.
Still hard to know exactly when to land P3...hard to know whether to err
to the end of the time range or the beginning?

What if I simply asked: Is it possible to land the planes in this order with
a gap of 10 minutes?

P15

P3 15

P2 25

PS5 35

P4 x (can't do it)

We CAN answer this question with a greedy algorithm.

1. Land the first plane at the earliest possible time

2. For each subsequent plane, add the gap requirement to the previous
landing time and see if it is in range. If so, this is when you land the
plane. If this time is too late (past the window), we know the task is
impossible. If this time is too early, then wait until the plane's time
window opens and then land it.

P1, P4, P2, PS5, P3, try gap = 1

P1=5

P4 = see that 5+1 = 6 6, and the window for 6 isn't open yet, so we
would have to land P4 at time 30

P2 =31

P5=32

P3 =x (33 is too late)

Last observation: If we can land the planes with a gap of t minutes, we
can always land the planes with a gap less than t minutes. If we can
NOT land the planes with a gap of t minutes, then we CAN NOT land
the planes with a gap greater than t minutes... THIS IS A
DECREASING FUNCTION!!!

Con LHD
: >

Y
—J [

We can binary search this (boolean) function

If we knew the landing order, then we could binary search the
function...

But there are ONLY 8 planes!!! So, we can just try all the landing orders
and find the best answer.

PO 5-15 (second)

P1 20 - 50 (fifth)
P2 10 - 25 (third)
P3 30 - 40 (fourth)
P4 25 -45 (first)

perm=4,0,2,3,1
planes[perm[i]]

Problems to code live:

1. Need for Speed (kattis)
2. Incremental House of Pancakes (Code Jam Round 2 2020)

Need for Speed Sample 1:

3 5 (3 segments of driving, 5 units of time total)
4 -1 (distance 4, speed showing = -1)

4 0 (distance 4, speed showing = 0)

10 3 (distance 10, speed showing = 3)

Answer turns out to be 3, which we can verify:

d=4, s=2
d=4,s=3
d=10,d=6

Seg 1 =4/2
Seg2=4/3
Seg 3 =10/6

2+4/3+5/3 =5 (voila!)

We can guess what c is. If we guess too low, then the calculated time
would be too big. If we guess too high, the calculated time will be too
low.

For this sample, guess ¢ = 2:

d=4, s=1

d=4, s=2

d=10, s=5

time =4/1 +4/2+ 10/5=4+ 2+ 2 = 8 (too big)

This means our guess of ¢ =2 was too small.

low = 1 (because one of the listed speeds was -1), in general low is -min.
high = 10000000 (is safe)

Incremental House of Pancakes

L, R up to 10'8 pancakes...
we grab 1 then 2 then 3, etc.

Keep inmind that 1 +2+3 ... + 1.8 x 10°>2x 10'®
sum of the first n ints is n(n+1)/2...

One stack might be way bigger than another, so step 1...eat a bunch of
pancakes so the two stacks are close.

After they are close, we alternate...

Issues with integer binary searches

1. sometime mid = (low+high)/2, other times we want
mid=(low+high+1)/2. It's problem specific.

2. depending on how you characterize the problem, we could set low =
mid or low = mid+1. We could set high = mid or high = mid-1. You
have to be SUPER CAREFUL FOR BOTH DECISIONS.

3. Also, make sure that you set low when you are supposed to and high
when you are supposed (people flip these sometimes)

Close case...
100 104 steps=15

Now binary search again.

arithmetic sequence al = cur, numVals, skip =2
sum = (al + an)/2*n
an = cur + (nV-1)*2
sum = (cur + cur + (n-1)*2)/2*n
= (2 * (cur +n-1))/2*n
= (cur +n-1)*n

arith seq al = cur+1 skip 2
sum = (cur+1+cur+1+(n-1)*2)/2*n
= (curt+1+n-1)*n

