7/8/2020 - AVL Trees

Wednesday, July 8, 2020 4:01 PM

Seg faults - array out of bounds, using an arrow on a pointer that isn't
pointing to a struct.

arr[i] - I is out of bounds
p->weight - but p isn't pointing to an actual struct

struct person* p = NULL; %
struct person* q;

strcpy(p->name, "Bob");

strcpy(q->name, "Alice");

main readStuff(trienode* root))

;;i-él-l-ode* root = init(); /\ WD L% -

readStuff(root) insert(root, .

T

)

insert(trienode* root, ..

G T

Binary Search Trees

Avg Case - insert, search, delete is O(Ig n), n = # items in tree

Worst Case is O(n), if the tree is badly balanced.

Easy to create data: insert 1, insert 2, insert 3, ...

It would be nice to use the same Binary Search Tree idea, but guarantee
a worst case O(lg n) run time for insert, search, delete.

Looking for: A "balanced" binary search tree.

Run times are all O(h), where h is the height of the tree, so if we can
"limit" the height, that would be great.

First Discovered Balanced Binary Search Tree is called an AVL Tree.
(named after inventors adelson-velsky and randis)

From <https://en.wikipedia.org/wiki/AVL tree>

Imagine creating a BST, but trying to force the heights of the left and the
right to be close to one another (specifically, within 1.)

So for every node, we require that | height(left) - height(right) | <=1

Of course, we keep the same search tree property (go left for smaller
items, right for larger ones)

Valid AVL Trees

Some inserts will make the property fail (as will some deletes).
How do we fix the tree?

First though, let's prove that any binary search tree that adheres to this
properly will give us a tree that has a height h = O(lg n), where n is the
number of nodes in the tree.

Let T(h) = fewest number of nodes in a AVL tree of height h.
We will prove that T(h) = Fy+3 - 1, where F, = the nth Fibonacci number.

Fib: 1,1,2,3,5,8,13,21,34F; =1, Fa= 1, Fy = Fp; + Foo.
VAN
T(0)=1, T(1) =2, T(2) = 4

Assume that this is true for all values h less tha
chosen h'. (Assume it's true for T(0), T(1), T

(&

Use mathematical induction on h to prove the theorém
o arbitrar{ }?j
, .er T(h")

0 0

Prove the statement is true for h'+1

T(h'+1) = Fyss - 1

Imagine trying to form a valid AVL tree with height h'+1 with as few
nodes as possible. We must have a root node, a left subtree and a right
subtree.

Our avl tree is comprised of a smaller avl tree of height h', another
smaller avl tree of height h'-1 and the root.

T(h'+1)=T(h") + T(h'-1) + 1 (add fewest # of nodes larger subtree, plus
the fewest # of nodes in smaller subtree
plus the root)

=Fnp3-1)+ (Frpi2-1)+1
= Fp+4 -1 (this completes the proof.) qﬁ(\
So, let n = fewest # of nodes in an avl tree of height h: @

n=Funsz-1 \/\Jr Q/ (\
vl

—_—

How do I maintain this property?

There is a rebalance operation which will occur any time a node is
unbalanced.

I'll teach through example.

Algorithm:

Insert, then trace back up the
ancestral path. For each node on
this path, see if it's imbalanced.

If so, rebalance it, and continue up
the path. It can be shown that after
an insert, no more than one
rebalance will ever be done.

—

5

D
\\ms@/#!?

5
C
y i@?
B Ay]
— /ﬂ@ﬁ /i) n) /(m

Delete:
We first do the delete (will always be either a leaf node or a node with
one child.)

If leaf, we will basically do the same thing as insert, trace up the
ancestral path. If we see an imbalance, we fix it using the exact same
procedure as before. Then continue tracing up the tree. But, for delete,
we may have a rebalance at multiple levels.

P del |V @

/
G —)
AR

% e | tm
%QO ¥ é@%@

&, U @ &
2g Tougher part about delete is that
imbalanced, it's not the tra ly p lyt d

Rthyhtgtthlg bt and then
its longer subtree. If ther g either way.

e\ (30)

A

NN @ @ @

Run time proofs:

regular insert, delete is O(lg n), since h = O(Ig n).

As we go back up the tree, we do at most O(lg n) rebalances, and each
rebalance 1s O(1) time. To total time 1s O(lg n) + O(Ig n)*O(1) = O(Ilg n)

: @%

inta=x>0?4:5
inta;
if (x> 0)
a=4;
else
a=2>5;
This is what the question mark operator does.

Code

C ¢ =root
b = root->left
\ a = root->left->left
t0 = a->left
tl = a->right

\ '/7 t2 = b->right
t3 = c->right

T yellow is true for all 4 cases

LR case C/ VD\\T

¢ =root
A a = root->left
b = root->left->right

C =100l
a = root->left

/b< t] = b->left
v £2 = b->right
Q VY

_— -
1L ey
RL case
a = root
(/ ¢ = root->right
b = root->right->left
o
[0 \%

tl = b->left
t2 = b->right
A
/
T 11U

RR case
a =root
\/Q\)x(\) b = root->right
\77 ¢ = root->right->right

tl =b->left

T‘O C/ t2 = c->left

R

T (}

5@\ v(yﬂ \ D Delete two child case.)LQ/\ /\\[OL\/@
o) 9 %@?

A b = root->left->right
Y

™

