6/15/2020 - Recursion #1

Monday, June 15, 2020 4:09 PM

A recursive function programming is a function that
(sometimes) calls itself.

Note: a recursive function can't ALWAYS call itself...if it
did, the first function call would never end...

The 1dea 1s as follows:

Break the problem down into at least one piece that is a
problem of the exact same nature. So, instead of solving it,
we just call our own function WITH DIFFERENT
PARAMETERS to solve that smaller piece. Then we use
that solution to solve our specific query.

Other times, the problem is so easy, we just directly solve
it. This is typically called the base case (or base cases).

Outline

factorial

fibonacci

power

tipChart

sumDigits

decToBin

BinarySearch

modular exponentiation (modPow)
Towers of Hanoi

Linked List Stuff Revisited, With Recursion

SO NB WD =

[

n!=1x2x3...xn,alsodefine 0! =1

nl=(1x2x3...x(n-1))xn
= (n-1)! x n, this is true so long as n > 0...
and when n = 0, the answer 1s 1.






() R
X
o
ot

s DlRe),

ppppp



b= 1/b®, rule for negative exponents.

In general b*"Y = b* bY so...
be=b*lxb
power(b, ¢) = power(b, e-1)*b; ’




tipChart of row 1 to row 5 is kind of like
1. Print row 1
2. Print a tipChart of rows 2 through 5

// recursively print out a tip chart form minVal to maxVal
tipChart(int minVal, int maxVal, double percent)

Alternative breakdown > \) \/ §\ \/C




e 5

sum of digits of an integer
sumdigits(6427372) = sumdigits(642737) + 2
This is the easiest way to break this down recursively.

sumdigits(n) = sumdigits(n/10) + (n%10), this is our
recursive formula

O st G,



PERRNIYE Lq 7/

Towers of Hanoi

3 poles

Move 1 disk at a time

Can never place a larger disk on a smaller disk
Towers(int startTower, int endTower, int nDisks)

Key Realization - we are FORCED to solve the puzzle for
nDisks-1 to free up the bottom disk to move. We want to
move this disks to a "temporary" pole.
Towers(startTower, tempTower, nDisks-1);

Move the bottom disk from startTower to endTower
Towers(tempTower, endTower, nDisk-1);

Number of moves (we did this empirically) is probably
T(n)=2"-1.

We will prove this next time.

What is left to cover for this lecture:

1) fast modular exponentiation
2) Linked List Methods

Since we got a late start, I'll record both of these tonight and
post them in the same place I post the regular class lectures.

Arup

Answers to questions at end of class

n + m might not be less than a constant times n, and it might



not be less than a constant times m, but it is definitely less
than a constant times n+m, it is ALSO less than a constant
times max(n,m). There are two correct answers, at least...

O(n+m) or O(max(n,m)).

It's perfectly valid for a run time to be something like O(nm?)
...or say, O(nlg m)



