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Modular Exponentiation

Regular exponentiation problem is calculate baseexponent,

The modular exponentiation problem is calculate

base®*ronent mod n, where n is a pre-determined modulus value.
Answer to the first query is unbounded, but the answer to the second is
always in between 0 and n-1, inclusive.

Why is this useful??? - This is one of the most important calculations
that makes public key cryptography doable in practice. (RSA
encryption amounts to calculating a modular exponent with integer
values with hundreds (or even thousands) of digits.

Our previous recursive algorithm:
int modExp(int base, int exp, int mod) {
if (exp == 0) return 1;

return (modExp(base, exp-1,mod)*base)%mod,

}

Run-time: each time we subtract 1 off the exponent, so the run time is
simply the time of the multiplication and mod, and that whole time
multiplied by the VALUE of exp. O(exp*mult time)...the problem is
that exp might be a number with hundreds of digits, so this would
take, thousands of years to run....our computer would probably die
before then...

Now, let's consider A DIFFERENT way to split up an exponentiation
problem...

Pretend that exp is even.

base*P = basec*P/2 * hasecxp/2

Why is this useful???

The reason is that the first and second term are the same value (on the
right hand side, so I DON'T HAVE to recompute the second value...

In regular exponentiation, this is helpful but the calculation is
prohibitive because the sheer size of the number is too big.



But in modular exponentiation, the result for the calculation must be
no bigger than the mod value, so the size of the answer is limited and
this results in a huge speed up.

Idea is as follows:

if the exponent is even, calculate the square root of the desired value,
store the answer in a variable and square that variable.

232 mod 19

232 --> 216 * 216 (but we only make one recursive call)
-->28..>24..>22_> 2l (returns 2)

22 returns 4

24 returns 16

28 return 256 mod 19 --> returns 9

216 returns 9*%9 = 81 81 mod 19 --> return 5

232 returns 5*5 mod 19 =6

The savings pile up, particularly at the end, where instead of repeating
16 multiplications and mods, we did just one (times 5).

When the exponent is odd, we do the usual recursive breakdown...

Imagine breaking down 1000000

1000000 --> 500000 --> 125000 --> 62500 --> 31250 --> 15625 -->
15624 --> 7812 --> 3906 --> 1953 --> 1952 --> 976 --> 488 -->
244 --> 122 ->61 -->60-->30->15->14->7->6-->3 -->
2 -->1 (25 steps total instead of 1,000,000...huge savings...)

In general, we divide by 2 every other step, in the worst case, because
when you subtract 1 from an odd number, you get an even number, so
there are never two calls in a row with an odd number.

WE would have to divide exp by 2, log exp times to get down to 1.

the run time of this is O(log exp * mult time). Multiplication time is
O(digits) in the mod value, which is log exp...

Most linked list stuff can be done recursively

At the end of the day, a linked list is the first term, with a pointer to
another linked list...

A



function on front->next....

Recursive Delete

base case: delete the front node...we free it, and then we return the new
front of the list.



base case: delete the front node...we free it, and then we return the new
front of the list.

delete the node from list->next, then
ront of the list afterthe deletion was

recursive case...recursiv
reattach list->next to

trick is as follows to avoid O(n) work:

Dd front->next->next = front;



