6/10/2020 - Alg. Analysis

Wednesday, June 10, 2020 4:04 PM

1. Base Conversion
base of a number is the # of symbols used to represent numerals

Our base we use is base 10, since we have 10 digits:
0,1,2,3,4,5,6,7,8, and 9. (The name for our base is decimal.)

Other bases that have names:

base 2 is called binary. (0, 1)

base 3 is called ternary. (0, 1, 2)

base 8 is called octal. (0, 1, 2, 3,4, 5,6, 7)

base 16 is called hexadecimal (0, 1,2, ...,9,a, b, ¢, d, e and f)

Let's say we have some number in base b with the following
symbols:

d(k), d(k-1), ..., d(0)

This number has the value

d(k)bk + d(k-1)bk! + ... + d(0)b?

If I have the number 6254 in octal, it's value is simply

6(8%) +2(82) + 5(8") + 4(8%) = 3244

503 in base 8 converted to base 10 = 5(8%) + 0(8!) + 3(8) =323

We typically represent the base as a subscript so I might write
503s.

How to convert from base 10 to base b:

1723 in base 10, think about converting to base b:

1723 = d(k)bk + d(k-1)bk + ... d(1)b + d(0)

1723 % b = (d(k)bk + d(k-1)bk + ... d(1)b + d(0)) % b = d(0)

If I mod a number in base 10 by b, that will reveal the last digit of
that number in base b.

1723 /b = (d(k)bk + d(k-1)b&! + ... d(1)b + d(0))/b (int div)
1723 /b= d(k)b&! + d(k-1)b<2 + ... d(1)1 + 0

Integer divide by b lops off the last digit of the number in base b.

81723
8| 215 R3
8| 26 R7
8 3 R2
0 R3

172310 =32738
2. Big-Oh Intuition

O(f(n)) represents a class or set of functions, not just one function.
Usually, this isn't the common use. Usually, will simply say that some
function f(n) = O(n?), which simply means that f(n) belongs to the
class of functions described by O(n?). Furthermore, what they mean is
that f(n) is more complicated looking but the "important part of it" is

n2. \ &_)
N son G00)
QD(90 Pt mf\ﬁﬁ\mt _,
(i@iﬂ\ 19 e p%Wm/buh>%V“g&Q
W\)ﬂ’\\f\ Oa (/Dmg%o/\,/\k)

f(n) can't exceed some constant times g(n) as n grows large.

f(n) = O(g(n)) if only if

- C

What this really means is that if am given an ugly complicated
function, what I would like to do is find which Big-Oh class it belongs
to, stripping the fyaction of most of its ugliness, focusing on the portion

O\ o %%f\vakcji><ﬂﬂ%)

In terms of big-oh, 3n? and 17n? are treated the same.
Here is a short chart of different functions in terms of big oh:

1, n, n?, n3, etc. Basically polynomial terms, the higher your exponent
the "bigger" your big oh class is.

lg n grows slower than n¢ for any positive constant c. In terms of big oh,
all logs are the same regardless of base, which is why in textbooks, they
leave out the base in logs for big oh.

1, Ig (Ign), Ig n, (Ig n)%, sqrt(n), n, nlgn, nsqrt(n), n?, n’lg n.

Any exponential grows faster than any polyonomial, so nk grows faster
than c", provided that k is constant and ¢ > 1. Different bases for
exponentials means different big-ohs, so 8" does NOT equal 2",

f(n) = 3n + 17nlgn + n? + 5(2") = O(2")

Why do we use Big-Oh in CS?

We want a tool to judge how fast an algorithm might run.

But, counting exactly the number of tiny steps an algorithm might do is
near impossible. So, instead, all we hope to do, is count the number of
steps within a constant factor. The other thing is that different steps take
different speeds on different computers, so it would be hopeless to make
exact predictions.

The real goal of big-oh analysis is as follows:

1. Analyze an algorithm to figure out its big-oh.

2. Use that information to predict run times, to see if this solution is
viable for us.

3. Perhaps use it to compare competing algorithms to solve a problem
to decide which one to use.

Typically, we say that algorithms that run in a polynomial amount of
time in the input size are "reasonable" while those that are exponential
are not.

3. Summations - tool we need to figure out the big oh of an algorithm.
why we need summations:
Most code involves repetition. Counting the number of steps in repeating

code requires us to add a bunch of numbers. Summations are the formal
tool to add a bunch of numbers.

Simple example.

for (int 1=0; 1<n; 1++) {
scanf("%d", &array[i]);
sum += array[i];

}

Detailed - counting # of simple steps:
1.i=0
2. check if i<n, scanf, sum +=, i++ (repeat this n times)
3. check i<n one last time

Counting the steps: 1 +4*n+1=4n+2

Normally, we won't bother to go to this level of detail.

All we'll say is - hey, we're doing a constant amount of work in the loop,
and we are repeating this n times.

APy,
(o
g p— 5%/%05 KJF
Wﬂm R J@/WELQ

This is short hand notation for: f(a) + f(a+1) + f(a+2) + ... + f(b)

%9 zﬂgr

The sum that represents the run time of the code I just showed you is

N St
. v

|

for (int i=0- i<n* 1++)

for (int j=0; j<=i; j++)
// Simple statement in here.

n-\ | C
AV
O Ny =0

; ibQM %f@(\‘)
<G (e

Proof is based on commutative property of addition (adding same stuff
in a different order)

o
iCQ(;)f gi?(ﬂ
A .0

Factoring...

|~ & Z \ ;N
LHS = f(a) + f(at+1) + f(a+2) + f(a+3) + + f(b)
RHS = (f(1) + f(2) . +f(a-1)+f(a) + flat1) + ... + (b))
- () +1f2) .4f(a-1))
- = f(a) + flatl) + ... +f(b)
2(/\ @\/\ Zm
. o Vel
L2 (=3 |

Timing Problems

Making estimates for run time based on the big-oh run time of an
algorithm.

Some algorithm has a run time of O(n?). For an input size of n = 4, the
algorithm takes 10 ms. How long will it take for an input size of n = 16?

If a run-time is O(n?) we can model its run time as f(n) = cn?, for some
constant c. In order for this to be true, the Big Oh given has to be a tight

upper bound. For this problems we will assume a tight upper bound.

f(4) = c4? =10 ms --> so ¢ = 10/4> ms

f(16) = cl62 = ﬁ /é/z/ \/h{
) L

= Lt
— O‘LOVL 14K

— v m3

One thing to note: a run time can be based on more than one variable in
the input.

Consider this problem:

An algorithm that processes an n by m array runs in O(nlgm) time. For
an input with n = 2000 and m = 64, the algorithm takes 250 ms. How

long do we expect the algorithm to take on an array with n = 500 and m
— 9209

Let the runtime of the algorithm be f(n,m) = cnlgm for some const c.

£(2000,64) = ¢(2000)(Ig 64) = 250 ms
¢(2000)(6) =250 ms
¢ =250/12000 ms

£(500, 220) = (250/12000 ms)(500)(lg 220) \ 0

_ 290 Sag, O L

Loop Examples - Sums
Lo D § 1
S [\N\=)n=n

\
_
S
R
-

\

%\ me\ = = O
=

3. We start at n, and keep on dividing (int div) by 2 until we get to 0.
So we have n, n/2, n/4, ... after k steps we have n/2k. We want to
know the value of k for which n/2k =1
n=2k->k=1gmn=0 (Ign).

4. Sums don't work here either, key is to realize that j++ runs a max of
n times and same for i++ so the upper bound is n+n = O(n).

6 i D
| K \ N
/x“« \ SER

\(\V\ /\“O/\

WU/; oY

E 76<ﬂ7/

(

