6/1/2020 Lecture - Queues
day, June 1, 20 :

Monday, , 2020

2ngueine (3)
gt (1)
Uhquert (A)
Uit ()
wa Ao e ()
>%§\Jﬂﬂ Wﬁf\é

0@ vewd @m% = OQ\>
CING (e jaqo%f DLV\)

struct node { struct queue {
int data; // or whatever struct node* front;
struct node* next; struct node* back;
K K

queue myline = NULL;
// Enequeue people...

V’/\Kj \ﬂ{

D WaN)’,
rp w1

By storing a pointer to both the front of the linked list and the back, we
can get O(1) run times for both enqueue and dequeue.

Other potential operations for a queue:
1) size (what is the size of the queue)
2) empty (tells us if the queue is empty or not)
3) front (returns the front of the queue without removing it)

main init
struct queue mine; 0 ----
initialize(&mine); qPtr

qPtr->front = NULL;
qPtr->back = NULL,;

1. Create a new node with the number enqueue, return 0 if malloc
failed.
2. Two cases:
a. queue is empty
1. set front to new node
11. set back to new node
b. queue is NOT empty
1. attach back to new node
11. reset back to the new back of the list

qPtr->back->next = temp

Dequeue

If empty, I return -1 to signify an empty queue.

Save a ptr to the second node.

Save the value in the first node.

Free the first node.

Return the appropriate value.

If this empties the list, set both front and back to NULL.
AN

Queue: Array Implementation (need O(1) enqueue, O(1) dequeue)

AS A%

21)AL D
°o v 1345 o e
2/ @Wg Enqueue

-

Sy
C&/l (A C. \‘ roughly we do

array[?] = newval

%m ‘& Q \ sizet++;

This idea is pretty good, but it looks like we could fall off the array!!!

Is there anything useful being stored in index 0? --- No, it's been
dequeued.

So, instead of falling off of the array - where should we go?
BACK TO INDEX 0.

Mod lets me do this very easily!!!
Dequeue logic:

front = (front+1)%capacity;
Enqueue logic:

array[(front+size)%capacity] = enqueueValue
Note: size does NOT get modded.

2 |
ooy BTG

zHA = 5
nqueue

g | M (\@ A/ Z ﬂ/ %ng%eue@) 0
x = dequeue

7

AV SOl
y = dequeue()

1

Chp |4 roip
z = dequeue()

enqueue(12)
w = dequeue()

Uy

