Dynamic Mem Alloc Day 1 (5/13)

Wednesday, May 13, 2020 4:05 PM
Almost all the memory you allocate in intro to c is statically allocated
This means the memory requirement is known at compile time.
Examples
int x;

Int values[1000];

intn;
// set n to something
int values[n]; // nisn't known at compile time

Wouldn't this be a nice capability? YES!!!
Dynamic Mem Allocation is allocating memory
At run time w/o necessarily knowing much memory

You will need before you run the program.

Things that are true about statically allocated memory

1. Size of it is fixed at compile time.

2. It "survives" (is in scope) from the time it is declared to the curly
Brace that closes the nearest open that it came right after.

3. You are limited in how much you can declare by the stack size and the stack
is smaller than the heap, where dynamically allocated memory comes from.

Why use dynamically allocated memory?

1. To have memory you allocate persist longer than the function within which it
was declared.

2. When you want to have a lot of memory!

3. Dynamically allocated memory is always referred to by pointers and pointers
are very quick to pass between functions.

Function: malloc - takes in a single integer - the number of bytes you want to
allocate returns a pointer to that memory. If the malloc fails, null is returned.

intn;
scanf("%d", &n);
int* array = malloc(n*sizeof(int));

I \) AWNSY "’\\\w

When you are done using the memory you dynamically allocated, you must free it:

******************** izeof(char*))

ooooooooooo (10*sheoﬂchad

~U

asted space

I|

Y [Cla

HA

\

— /\\o\j

/)\\(‘

Ky

/

+ SAME Gk ST
A* f%y ot Strgs DR

S\2L5

Al — T Poets

D06 ’\Eﬁ@
LAt

CAT

[I7] —

