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Motivation for AVL Trees

 Recall the basics of Binary Search Trees
 The goal of a BST is to provide O(log n) lookup, 

insertion, deletion, etc.
 However, this goal is only accomplished on a 

“complete” binary tree
 a tree where all levels are filled with the possible 

exception of the last level, which is filled from left to right
 Given a complete BST, the height of the tree is 

approximately log n, where n is the number of nodes

 Remember:
 If a BST is not complete, the height is NOT necessarily 

logn
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Motivation for AVL Trees

 Recall the basics of Binary Search Trees
 The height of a BST depends on the order of 

insertion
 Example:

 Inserting values 1, 2, 3, 4, 5, 6, and 7 into an initially 
empty BST results in what?

 Each new values ends up going to the “right” of the 
previous value

 So we end up with a completely right-skewed tree
 This “tree” has degenerated into a linked list with respect 

to the running time of operations
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Motivation for AVL Trees

 Recall the basics of Binary Search Trees

(a) An unbalanced BST

(b) A balanced BST
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Motivation for AVL Trees

 This “tree” is just a 
linked list in binary 
tree clothing.

 It takes 2 tests to 
locate 12, 3 to locate 
14, and 8 to locate 52.

 Hence, the search 
effort for this binary 
tree is O(n).
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Motivation for AVL Trees

 Balanced BST
 We want to maintain balance in our BSTs
 Is there a way, regardless of the insertion order of 

elements, to maintain this balance?
 To guarantee a height of log(n)?

 Basically, can we keep this balance?
 Short answer:  yes!
 AVL Trees:

 G.M. Adelson-Velskii and E.M. Landis
 Published their algorithm in 1962 in a paper entitled

"An algorithm for the organization of information."
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AVL Trees

 AVL Tree
 Definition:

 An AVL tree is a BST in which the heights of the subtrees, 
of any given node, differ by no more than 1

 For EVERY node in a BST, you must check the height of 
the left and right subtree of that node

 If the height of those subtrees differ by no more than 1, 
then that BST is an AVL tree

 Thus, an AVL tree is a balanced BST
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AVL Trees

 AVL Tree
 This BST is an AVL tree.
 It takes 2 tests to locate 

18, 3 to locate 12, and 4 
to locate 8.

 Hence, the search effort 
for this binary tree is 
O(log2n).
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AVL Trees

 AVL Tree
 For a tree with 1000 nodes, the worst case for a 

completely unbalanced tree is 1000 tests.
 Again, degenerating to a linked list

 However, the worst case for a balanced tree is 10 
tests.
 HUUUUUGE difference

 Hence, balancing a tree can lead to significant 
improvements.
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AVL Trees

 AVL Trees:  Formal Definition
1) All empty trees are also, by definition, AVL trees
2) If T is a non-empty BST with TL and TR as its left 

and right subtrees, respectively, then T is an AVL 
tree if and only if:
1) TL and TR are also AVL trees
2) |hL – hR| <= 1

 where hL and hR are the heights of TL and TR, respectively

TL TR
hL hL + 1 or hL - 1
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AVL Trees

 AVL Tree
 AVL trees are height-balanced BSTs
 All nodes in an AVL tree have a 

Balance Factor (BF)
 Balance factor of a node = height of 

the left subtree minus the height of 
the right subtree
 BF = hL – hR
 or BF = hR – hL

 An AVL tree can have only

6

4

1

7

9 0

-1

0

0

1

Red numbers
are Balance Factors

An AVL Tree

balance factors of -1, 0, or 1 at every node
 For every node in a BST, the height of the left and right 

subtrees can differ by no more than 1



AVL Trees:  Insertion page 12

AVL Trees

 AVL Trees:  Examples

Red numbers are Balance Factors
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AVL Trees

 Skewed AVL Trees
 Notice that the definition of an AVL tree does NOT 

require that all leaf nodes be on the same level or 
even adjacent levels
 As such, it is possible to construct AVL trees that are quite 

skewed as shown below:
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AVL Trees

 AVL Trees:  Implementation
 To implement an AVL tree, simply associated a BF 

with each node, “x”

 x->bf = hL - hR

 Again, in an AVL-tree, BF can be one of {-1, 0, 1}

left right
data

BF

x
struct AVLTreeNode{

int data;
int BF;
struct AVLTreeNode *left;
struct AVLTreeNode *right;

};
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AVL Trees

 AVL Trees:  Good News & Bad News
 Good News

 Search is O(log n) = O(height)

 Bad News
 Insert and delete may cause the tree to be unbalanced
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AVL Trees

 Insertion into an AVL Tree
 Insertion into an AVL tree is just like inserting into a 

standard BST
 You simply do a search, going left or right at every step, in 

the tree until you find the correct leaf node
 You then insert in either the left or right child of that node

 Once the new node is inserted, the balance MUST 
be checked and restored if the tree has become 
unbalanced
 It often turns out that the new node can be inserted 

without affecting the height of the subtree
 If this happens, then the balance of the root will not change
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AVL Trees

 Insertion into an AVL Tree
 Once the new node is inserted, the balance MUST 

be checked and restored if the tree has become 
unbalanced
 Even if the insertion caused one of the subtrees to 

increase in height, it may be that the shorter of the 
subtrees changed in height.
 So only the balance factor of the root will change

 The only case that causes difficulty:
 Inserting a new node into a subtree of the root, which is 

taller than the other subtree, and the height of the taller 
subtree increases

 So one subtree will have a height 2 more than the other
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AVL Trees

 Insertion into an AVL Tree
 Thus, an AVL tree can become unbalanced due to 

an insertion in one of four ways:
 (two of which are symmetric to the others)
1) Inserting a new node into the right subtree of a right child
2) Inserting a new node into the left subtree of a left child

 This is the symmetric case
3) Inserting a new node into the left subtree of a right child
4) Inserting a new node into the right subtree of a left child

 This is the symmetric case
 The first two cases are easier to handle (as the require 

only one rotation), so we will go over them first
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AVL Trees

 Restoring Balance in an AVL Tree
 Problem

 Inserting a new node may cause the BF of some node, on 
the path from the root to the insertion point, to become 2 
or -2

 Solution:
 First insert the node following typical rules of a BST
 Then, from that insertion point, BACK UP towards the 

root, updating the BFs of all nodes along the path to root
 If a node ends up with a BF of 2 or -2, you must adjust the 

tree by rotating around deepest such node
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AVL Trees

 Restoring Balance in an AVL Tree
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AVL Trees

 Four Cases of Imbalance:  LL Imbalance

Red values are balance factors
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AVL Trees

 Four Cases of Imbalance:  RR Imbalance

Red values are balance factors
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AVL Trees

 Four Cases of Imbalance:  LR Imbalance

Red values are balance factors

Node around which rotation will be performed
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AVL Trees

 Four Cases of Imbalance:  RL Imbalance

Red values are balance factors

Node around which rotation will be performed
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AVL Trees

 AVL Balance Factor:
 An LH tree is a tree in which the left subtree has a 

height greater than the right subtree.
 An RH tree is a tree in which the right subtree has a 

height greater than the left subtree.
 An EH tree is a tree in which the left and right 

subtrees have the same height.
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AVL Trees

 AVL Balance
Factor:

HL= 2

HL=1

HR= 1

HR= 0 HL=-1 HR= 0
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AVL Trees

 Balancing AVL Trees:
 Whenever we insert a node into a tree or delete a 

node from a tree, the resulting tree may become 
unbalanced.

 When we detect that a tree has become 
unbalanced, we must rebalance it.

 AVL trees are balanced by rotating nodes either to 
the left or to the right.
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AVL Trees

 Balancing AVL Trees:
 We consider four cases that require rebalancing 

(previously shown):
 Left of left
 Right of right 
 Right of left
 Left of right

 Note that the first “Left” or “Right” refers to a 
subtree

 the second “Left” or “Right” refers to the whole tree
 this will make sense in a minute
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AVL Trees

 Balancing AVL Trees:  Left of Left

 In this case, a tree that is left high (2nd left) has a 
subtree that has become left high (1st left).

 Here we see that the tree is left high to start
 look at 18

 After inserting 4, node 12 goes from EH to LH.
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AVL Trees

 Balancing AVL Trees:  Right of Right

 In this case, a tree that is right high (2nd right) has a 
subtree that has become right high (1st right).

 Here we see that the tree is right high to start
 look at 14

 After inserting 44, node 20 goes from EH to RH.
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AVL Trees

 Balancing AVL Trees:  Right of Left

 In this case a tree that is left high has a subtree that 
has become right high.

 Here we see that the tree is left high to start
 look at 18

 After inserting 13, node 12 goes from EH to RH.
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AVL Trees

 Balancing AVL Trees:  Left of Right

 In this case a tree that is right high has a subtree 
that has become left high.

 Here we see that the tree is right high to start
 look at 14

 After inserting 19, node 20 goes from EH to LH.
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AVL Trees

 Balancing AVL Trees:  Left of Left

 When the out-of-balance condition has been 
created by a left-high subtree of a left-high tree,

 we must balance the tree by rotating the out-of-
balance node to the right.
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AVL Trees

 Balancing AVL Trees:  Left of Left

 After inserting 12, 
node 20 becomes 
unbalanced (LH).

 We must then 
rotate the 
unbalanced node, 
20, to the right.
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AVL Trees

 Balancing AVL Trees:  Left of Left

 After inserting 4, 
node 18 becomes 
unbalanced (LH).

 Hence, we need 
to rotate 18 to the 
right.

 This makes 18 
the right subtree
of the new root, 
12.
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AVL Trees

 Balancing AVL Trees:  Left of Left

 This creates a 
problem, though.

 What do we do 
with the current 
right subtree of 12 
(i.e., 14)?
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AVL Trees

 Balancing AVL Trees:  Left of Left

 In the process of 
being rotated to 
the right, node 18 
lost its left 
subtree.

 Hence, we can 
use the left 
subtree of 18 to 
attach 14 to.
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AVL Trees

 Balancing AVL Trees:  Right of Right

 When the out-of-balance condition has been 
created by a right-high subtree of a right-high tree,

 we must balance the tree by rotating the out-of-
balance node to the left.

 This is simply the “mirror” of the left-of-left case.



AVL Trees:  Insertion page 39

AVL Trees

 Balancing AVL Trees:  Right of Right

 After inserting 20, 
node 12 becomes 
unbalanced (RH).

 We must then 
rotate the 
unbalanced node, 
12, to the left.
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AVL Trees

 Balancing AVL Trees:  Right of Right

 After inserting 44, 
node 14 becomes 
unbalanced (RH).

 Hence, we need 
to rotate the 
unbalanced node, 
14, to the left.

 This makes 14 
the left subtree of 
the new root, 20.
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AVL Trees

 Balancing AVL Trees:  Right of Right

 This creates a 
problem, though.

 What do we do 
with the current 
left subtree of 20 
(i.e., 18)?
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AVL Trees

 Balancing AVL Trees:  Right of Right

 In the process of 
being rotated to 
the left, node 14 
lost its right 
subtree.

 Hence, we can 
use the right 
subtree of 14 to 
attach 18 to.
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Brief Interlude:  FAIL Picture
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Daily UCF Bike FAIL
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Daily UCF Bike FAIL

Courtesy of
Russell Roissier

•Maybe the UCF police 
realized we have some 
intellectually challenged 
students

•Or at least bike-lock 
challenged students

•So they got rid of the 
basic posts and installed 
actual bike-lock style 
posts

•Unfortunately, well, as 
the saying goes,
“a picture is worth a 
thousand words”
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AVL Trees

 Balancing AVL Trees:
 Right of Left     &     Left of Right

 The first two cases only required single rotations to 
balance the trees.

 We now study two out-of-balance conditions in 
which we need to rotate two nodes, one to the left 
and one to the right, to balance the tree.
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AVL Trees

 Balancing AVL Trees:  Right of Left

 When the out-of-balance condition has been 
created by a right-high subtree of a left-high tree,

 we must balance the tree by performing TWO 
rotations
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AVL Trees

 Balancing AVL Trees:  Right of Left

 To balance the tree, we 
first rotate the left 
subtree, 4, of the out-of-
balance node, 12, to the 
left.

 This will create a left-of-
left situation.

 We then rotate the the
unbalanced node to the 
right to balance the tree.
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AVL Trees

 Balancing AVL Trees:  Right of Left

 This is a slightly more 
complex problem.

 After inserting 16,
node 18 becomes 
unbalanced.

 Hence, we need to 
rotate the left subtree, 
12, of the unbalanced 
node, 18, to the left.
 shown at (b2)
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AVL Trees

 Balancing AVL Trees:  Right of Left

 This will create a left-of-
left situation.
 (b2)

 We then rotate the the
out-of-balance node, 
18, to the right to 
balance the tree.
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AVL Trees

 Balancing AVL Trees:  Left of Right

 When the out-of-balance condition has been 
created by a right-high subtree of a left-high tree,

 we must balance the tree by performing TWO 
rotations
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AVL Trees
 Balancing AVL Trees:  Left of Right

 To balance the tree we 
first rotate the right 
subtree, 44, of the out 
of balance node, 12, to 
the right.

 This will create a right-
of-right situation.

 We then rotate the the
unbalanced node to the 
left to balance the tree.
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AVL Trees
 Balancing AVL Trees:  Left of Right

 This is a slightly more 
complex problem.

 After inserting 20,
node 18 becomes 
unbalanced.

 Hence, we need to 
rotate the right subtree, 
44, of the unbalanced 
node, 18, to the right.
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AVL Trees
 Balancing AVL Trees:  Left of Right

 This will create a right-
of-right situation.

 We then rotate the the
out-of-balance node, 
18, to the left to balance 
the tree.
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AVL Trees

 Insertion into AVL Trees (Summary)
 We insert following standard rules of a BST
 Then we trace back up to the root of the tree
 As we back out of the tree, constantly check the 

balance factor of each node
 When a node is out of balance, we balance it and 

continue backing up out of the tree
 Note:

 Not all inserts will produce an out of balance tree



AVL Trees:  Insertion page 56

AVL Trees

 Summary of AVL Trees:
 Arguments for using AVL trees:

1) Search/insertion/deletion is O(log N) since AVL trees 
are always balanced.

2) The height balancing adds no more than a constant 
factor to the speed of insertion. 

 Arguments against using AVL trees:
1) Requires extra space for balancing factor
2) It may be OK to have a partially balanced tree that 

would give performance similar to AVL trees without 
requiring the balancing factor
 Splay trees (something we won’t be covering in CS1)
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AVL Trees:  Insertion

WASN’T
THAT

TITILLATING!
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Daily Demotivator
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