
Computer Science Department
University of Central Florida

AVL Trees:
Insertion

COP 3502 – Computer Science I

AVL Trees: Insertion page 2

Motivation for AVL Trees

 Recall the basics of Binary Search Trees
 The goal of a BST is to provide O(log n) lookup,

insertion, deletion, etc.
 However, this goal is only accomplished on a

“complete” binary tree
 a tree where all levels are filled with the possible

exception of the last level, which is filled from left to right
 Given a complete BST, the height of the tree is

approximately log n, where n is the number of nodes

 Remember:
 If a BST is not complete, the height is NOT necessarily

logn

AVL Trees: Insertion page 3

Motivation for AVL Trees

 Recall the basics of Binary Search Trees
 The height of a BST depends on the order of

insertion
 Example:

 Inserting values 1, 2, 3, 4, 5, 6, and 7 into an initially
empty BST results in what?

 Each new values ends up going to the “right” of the
previous value

 So we end up with a completely right-skewed tree
 This “tree” has degenerated into a linked list with respect

to the running time of operations

AVL Trees: Insertion page 4

Motivation for AVL Trees

 Recall the basics of Binary Search Trees

(a) An unbalanced BST

(b) A balanced BST

AVL Trees: Insertion page 5

Motivation for AVL Trees

 This “tree” is just a
linked list in binary
tree clothing.

 It takes 2 tests to
locate 12, 3 to locate
14, and 8 to locate 52.

 Hence, the search
effort for this binary
tree is O(n).

AVL Trees: Insertion page 6

Motivation for AVL Trees

 Balanced BST
 We want to maintain balance in our BSTs
 Is there a way, regardless of the insertion order of

elements, to maintain this balance?
 To guarantee a height of log(n)?

 Basically, can we keep this balance?
 Short answer: yes!
 AVL Trees:

 G.M. Adelson-Velskii and E.M. Landis
 Published their algorithm in 1962 in a paper entitled

"An algorithm for the organization of information."

AVL Trees: Insertion page 7

AVL Trees

 AVL Tree
 Definition:

 An AVL tree is a BST in which the heights of the subtrees,
of any given node, differ by no more than 1

 For EVERY node in a BST, you must check the height of
the left and right subtree of that node

 If the height of those subtrees differ by no more than 1,
then that BST is an AVL tree

 Thus, an AVL tree is a balanced BST

AVL Trees: Insertion page 8

AVL Trees

 AVL Tree
 This BST is an AVL tree.
 It takes 2 tests to locate

18, 3 to locate 12, and 4
to locate 8.

 Hence, the search effort
for this binary tree is
O(log2n).

AVL Trees: Insertion page 9

AVL Trees

 AVL Tree
 For a tree with 1000 nodes, the worst case for a

completely unbalanced tree is 1000 tests.
 Again, degenerating to a linked list

 However, the worst case for a balanced tree is 10
tests.
 HUUUUUGE difference

 Hence, balancing a tree can lead to significant
improvements.

AVL Trees: Insertion page 10

AVL Trees

 AVL Trees: Formal Definition
1) All empty trees are also, by definition, AVL trees
2) If T is a non-empty BST with TL and TR as its left

and right subtrees, respectively, then T is an AVL
tree if and only if:
1) TL and TR are also AVL trees
2) |hL – hR| <= 1

 where hL and hR are the heights of TL and TR, respectively

TL TR
hL hL + 1 or hL - 1

AVL Trees: Insertion page 11

AVL Trees

 AVL Tree
 AVL trees are height-balanced BSTs
 All nodes in an AVL tree have a

Balance Factor (BF)
 Balance factor of a node = height of

the left subtree minus the height of
the right subtree
 BF = hL – hR
 or BF = hR – hL

 An AVL tree can have only

6

4

1

7

9 0

-1

0

0

1

Red numbers
are Balance Factors

An AVL Tree

balance factors of -1, 0, or 1 at every node
 For every node in a BST, the height of the left and right

subtrees can differ by no more than 1

AVL Trees: Insertion page 12

AVL Trees

 AVL Trees: Examples

Red numbers are Balance Factors

6

5

4

7

9 0

-1

0

0

1

An AVL Tree

6

4

1

9 2

-1

0

1

Non-AVL Tree

7 -1

8 0

6

4

3

7 -2

0

1

2

Non-AVL Tree

8

9 010

-1

6

4

1

10 2

-1

0

1

Non-AVL Tree

8 0

9 070

6

4

1

9 0

1

0

0

An AVL Tree

5 0

6

4

1

9 1

0

0

0

An AVL Tree

5 8 00

AVL Trees: Insertion page 13

AVL Trees

 Skewed AVL Trees
 Notice that the definition of an AVL tree does NOT

require that all leaf nodes be on the same level or
even adjacent levels
 As such, it is possible to construct AVL trees that are quite

skewed as shown below:
1

11

0 01

0

0

-1

-1 -1

-1-1 -1

-10

0

0 0

AVL Trees: Insertion page 14

AVL Trees

 AVL Trees: Implementation
 To implement an AVL tree, simply associated a BF

with each node, “x”

 x->bf = hL - hR

 Again, in an AVL-tree, BF can be one of {-1, 0, 1}

left right
data

BF

x
struct AVLTreeNode{

int data;
int BF;
struct AVLTreeNode *left;
struct AVLTreeNode *right;

};

AVL Trees: Insertion page 15

AVL Trees

 AVL Trees: Good News & Bad News
 Good News

 Search is O(log n) = O(height)

 Bad News
 Insert and delete may cause the tree to be unbalanced

6

5

4

7

9 0

-1

0

0

1

6

5

4

7

9 0

-1

1

1

2

3

Insert 3

0An AVL Tree
No longer an AVL Tree

AVL Trees: Insertion page 16

AVL Trees

 Insertion into an AVL Tree
 Insertion into an AVL tree is just like inserting into a

standard BST
 You simply do a search, going left or right at every step, in

the tree until you find the correct leaf node
 You then insert in either the left or right child of that node

 Once the new node is inserted, the balance MUST
be checked and restored if the tree has become
unbalanced
 It often turns out that the new node can be inserted

without affecting the height of the subtree
 If this happens, then the balance of the root will not change

AVL Trees: Insertion page 17

AVL Trees

 Insertion into an AVL Tree
 Once the new node is inserted, the balance MUST

be checked and restored if the tree has become
unbalanced
 Even if the insertion caused one of the subtrees to

increase in height, it may be that the shorter of the
subtrees changed in height.
 So only the balance factor of the root will change

 The only case that causes difficulty:
 Inserting a new node into a subtree of the root, which is

taller than the other subtree, and the height of the taller
subtree increases

 So one subtree will have a height 2 more than the other

AVL Trees: Insertion page 18

AVL Trees

 Insertion into an AVL Tree
 Thus, an AVL tree can become unbalanced due to

an insertion in one of four ways:
 (two of which are symmetric to the others)
1) Inserting a new node into the right subtree of a right child
2) Inserting a new node into the left subtree of a left child

 This is the symmetric case
3) Inserting a new node into the left subtree of a right child
4) Inserting a new node into the right subtree of a left child

 This is the symmetric case
 The first two cases are easier to handle (as the require

only one rotation), so we will go over them first

AVL Trees: Insertion page 19

AVL Trees

 Restoring Balance in an AVL Tree
 Problem

 Inserting a new node may cause the BF of some node, on
the path from the root to the insertion point, to become 2
or -2

 Solution:
 First insert the node following typical rules of a BST
 Then, from that insertion point, BACK UP towards the

root, updating the BFs of all nodes along the path to root
 If a node ends up with a BF of 2 or -2, you must adjust the

tree by rotating around deepest such node

AVL Trees: Insertion page 20

AVL Trees

 Restoring Balance in an AVL Tree

6

5

4

7

9 0

-1

0

0

1

6

5

4

7

9 0

-1

1

1

2

3

Insert 3

0AVL
Not AVL

Rotate
6

4

3

7

9

-1

0

0

0

AVL

5 0 0

AVL Trees: Insertion page 21

AVL Trees

 Four Cases of Imbalance: LL Imbalance

Red values are balance factors

2

Tree After Insertion

2

0

0

0 01

1 0

0

Node around which rotation will be performed

1

Tree Before Insertion

1

0

0

0 00

0 0

AVL Trees: Insertion page 22

AVL Trees

 Four Cases of Imbalance: RR Imbalance

Red values are balance factors

Node around which rotation will be performed

Tree before Insertion

0

0

0

-1

0 00

0 0

Tree after Insertion

0

0

-2

0 -10

0 -1

0

AVL Trees: Insertion page 23

AVL Trees

 Four Cases of Imbalance: LR Imbalance

Red values are balance factors

Node around which rotation will be performed

2

Tree after Insertion

2

0

0

0 0-1

0 1

0Tree before Insertion

1

1

0

0

0 00

0 0

AVL Trees: Insertion page 24

AVL Trees

 Four Cases of Imbalance: RL Imbalance

Red values are balance factors

Node around which rotation will be performed

Tree before Insertion

0

0

0

-1

0 00

0 0

Tree after Insertion

0

0

-2

0 10

-1 0

0

AVL Trees: Insertion page 25

AVL Trees

 AVL Balance Factor:
 An LH tree is a tree in which the left subtree has a

height greater than the right subtree.
 An RH tree is a tree in which the right subtree has a

height greater than the left subtree.
 An EH tree is a tree in which the left and right

subtrees have the same height.

AVL Trees: Insertion page 26

AVL Trees

 AVL Balance
Factor:

HL= 2

HL=1

HR= 1

HR= 0 HL=-1 HR= 0

AVL Trees: Insertion page 27

AVL Trees

 Balancing AVL Trees:
 Whenever we insert a node into a tree or delete a

node from a tree, the resulting tree may become
unbalanced.

 When we detect that a tree has become
unbalanced, we must rebalance it.

 AVL trees are balanced by rotating nodes either to
the left or to the right.

AVL Trees: Insertion page 28

AVL Trees

 Balancing AVL Trees:
 We consider four cases that require rebalancing

(previously shown):
 Left of left
 Right of right
 Right of left
 Left of right

 Note that the first “Left” or “Right” refers to a
subtree

 the second “Left” or “Right” refers to the whole tree
 this will make sense in a minute

AVL Trees: Insertion page 29

AVL Trees

 Balancing AVL Trees: Left of Left

 In this case, a tree that is left high (2nd left) has a
subtree that has become left high (1st left).

 Here we see that the tree is left high to start
 look at 18

 After inserting 4, node 12 goes from EH to LH.

AVL Trees: Insertion page 30

AVL Trees

 Balancing AVL Trees: Right of Right

 In this case, a tree that is right high (2nd right) has a
subtree that has become right high (1st right).

 Here we see that the tree is right high to start
 look at 14

 After inserting 44, node 20 goes from EH to RH.

AVL Trees: Insertion page 31

AVL Trees

 Balancing AVL Trees: Right of Left

 In this case a tree that is left high has a subtree that
has become right high.

 Here we see that the tree is left high to start
 look at 18

 After inserting 13, node 12 goes from EH to RH.

AVL Trees: Insertion page 32

AVL Trees

 Balancing AVL Trees: Left of Right

 In this case a tree that is right high has a subtree
that has become left high.

 Here we see that the tree is right high to start
 look at 14

 After inserting 19, node 20 goes from EH to LH.

AVL Trees: Insertion page 33

AVL Trees

 Balancing AVL Trees: Left of Left

 When the out-of-balance condition has been
created by a left-high subtree of a left-high tree,

 we must balance the tree by rotating the out-of-
balance node to the right.

AVL Trees: Insertion page 34

AVL Trees

 Balancing AVL Trees: Left of Left

 After inserting 12,
node 20 becomes
unbalanced (LH).

 We must then
rotate the
unbalanced node,
20, to the right.

AVL Trees: Insertion page 35

AVL Trees

 Balancing AVL Trees: Left of Left

 After inserting 4,
node 18 becomes
unbalanced (LH).

 Hence, we need
to rotate 18 to the
right.

 This makes 18
the right subtree
of the new root,
12.

AVL Trees: Insertion page 36

AVL Trees

 Balancing AVL Trees: Left of Left

 This creates a
problem, though.

 What do we do
with the current
right subtree of 12
(i.e., 14)?

AVL Trees: Insertion page 37

AVL Trees

 Balancing AVL Trees: Left of Left

 In the process of
being rotated to
the right, node 18
lost its left
subtree.

 Hence, we can
use the left
subtree of 18 to
attach 14 to.

AVL Trees: Insertion page 38

AVL Trees

 Balancing AVL Trees: Right of Right

 When the out-of-balance condition has been
created by a right-high subtree of a right-high tree,

 we must balance the tree by rotating the out-of-
balance node to the left.

 This is simply the “mirror” of the left-of-left case.

AVL Trees: Insertion page 39

AVL Trees

 Balancing AVL Trees: Right of Right

 After inserting 20,
node 12 becomes
unbalanced (RH).

 We must then
rotate the
unbalanced node,
12, to the left.

AVL Trees: Insertion page 40

AVL Trees

 Balancing AVL Trees: Right of Right

 After inserting 44,
node 14 becomes
unbalanced (RH).

 Hence, we need
to rotate the
unbalanced node,
14, to the left.

 This makes 14
the left subtree of
the new root, 20.

AVL Trees: Insertion page 41

AVL Trees

 Balancing AVL Trees: Right of Right

 This creates a
problem, though.

 What do we do
with the current
left subtree of 20
(i.e., 18)?

AVL Trees: Insertion page 42

AVL Trees

 Balancing AVL Trees: Right of Right

 In the process of
being rotated to
the left, node 14
lost its right
subtree.

 Hence, we can
use the right
subtree of 14 to
attach 18 to.

AVL Trees: Insertion page 43

Brief Interlude: FAIL Picture

AVL Trees: Insertion page 44

Daily UCF Bike FAIL

AVL Trees: Insertion page 45

Daily UCF Bike FAIL

Courtesy of
Russell Roissier

•Maybe the UCF police
realized we have some
intellectually challenged
students

•Or at least bike-lock
challenged students

•So they got rid of the
basic posts and installed
actual bike-lock style
posts

•Unfortunately, well, as
the saying goes,
“a picture is worth a
thousand words”

AVL Trees: Insertion page 46

AVL Trees

 Balancing AVL Trees:
 Right of Left & Left of Right

 The first two cases only required single rotations to
balance the trees.

 We now study two out-of-balance conditions in
which we need to rotate two nodes, one to the left
and one to the right, to balance the tree.

AVL Trees: Insertion page 47

AVL Trees

 Balancing AVL Trees: Right of Left

 When the out-of-balance condition has been
created by a right-high subtree of a left-high tree,

 we must balance the tree by performing TWO
rotations

AVL Trees: Insertion page 48

AVL Trees

 Balancing AVL Trees: Right of Left

 To balance the tree, we
first rotate the left
subtree, 4, of the out-of-
balance node, 12, to the
left.

 This will create a left-of-
left situation.

 We then rotate the the
unbalanced node to the
right to balance the tree.

AVL Trees: Insertion page 49

AVL Trees

 Balancing AVL Trees: Right of Left

 This is a slightly more
complex problem.

 After inserting 16,
node 18 becomes
unbalanced.

 Hence, we need to
rotate the left subtree,
12, of the unbalanced
node, 18, to the left.
 shown at (b2)

AVL Trees: Insertion page 50

AVL Trees

 Balancing AVL Trees: Right of Left

 This will create a left-of-
left situation.
 (b2)

 We then rotate the the
out-of-balance node,
18, to the right to
balance the tree.

AVL Trees: Insertion page 51

AVL Trees

 Balancing AVL Trees: Left of Right

 When the out-of-balance condition has been
created by a right-high subtree of a left-high tree,

 we must balance the tree by performing TWO
rotations

AVL Trees: Insertion page 52

AVL Trees
 Balancing AVL Trees: Left of Right

 To balance the tree we
first rotate the right
subtree, 44, of the out
of balance node, 12, to
the right.

 This will create a right-
of-right situation.

 We then rotate the the
unbalanced node to the
left to balance the tree.

AVL Trees: Insertion page 53

AVL Trees
 Balancing AVL Trees: Left of Right

 This is a slightly more
complex problem.

 After inserting 20,
node 18 becomes
unbalanced.

 Hence, we need to
rotate the right subtree,
44, of the unbalanced
node, 18, to the right.

AVL Trees: Insertion page 54

AVL Trees
 Balancing AVL Trees: Left of Right

 This will create a right-
of-right situation.

 We then rotate the the
out-of-balance node,
18, to the left to balance
the tree.

AVL Trees: Insertion page 55

AVL Trees

 Insertion into AVL Trees (Summary)
 We insert following standard rules of a BST
 Then we trace back up to the root of the tree
 As we back out of the tree, constantly check the

balance factor of each node
 When a node is out of balance, we balance it and

continue backing up out of the tree
 Note:

 Not all inserts will produce an out of balance tree

AVL Trees: Insertion page 56

AVL Trees

 Summary of AVL Trees:
 Arguments for using AVL trees:

1) Search/insertion/deletion is O(log N) since AVL trees
are always balanced.

2) The height balancing adds no more than a constant
factor to the speed of insertion.

 Arguments against using AVL trees:
1) Requires extra space for balancing factor
2) It may be OK to have a partially balanced tree that

would give performance similar to AVL trees without
requiring the balancing factor
 Splay trees (something we won’t be covering in CS1)

AVL Trees: Insertion page 57

AVL Trees: Insertion

WASN’T
THAT

TITILLATING!

AVL Trees: Insertion page 58

Daily Demotivator

Computer Science Department
University of Central Florida

AVL Trees:
Insertion

COP 3502 – Computer Science I

	AVL Trees:�Insertion
	Motivation for AVL Trees
	Motivation for AVL Trees
	Motivation for AVL Trees
	Motivation for AVL Trees
	Motivation for AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	Brief Interlude: FAIL Picture
	Daily UCF Bike FAIL
	Daily UCF Bike FAIL
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees
	AVL Trees: Insertion
	Daily Demotivator
	AVL Trees:�Insertion

