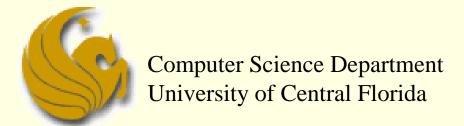
Linear Search vs Binary Search



COP 3502 - Computer Science I

Linear Search

- Searching from C-Programming class
 - In COP 3223, we studied how to find a value in an array
 - Look at each value in the array
 - Compare it to what we're looking for
 - If we see the value we are searching for,
 - Return that we've found it!
 - Otherwise, if we've iterated through the entire array and haven't located the value,
 - Return that the value isn't in the array

Linear Search

- Searching from C-Programming class
 - Your code should look something like this:

Linear Search

- Searching from C-Programming class
 - Analyze code:
 - Clearly, if the array is unsorted, this algorithm is optimal
 - They ONLY way to be sure that a value isn't in the array is to look at every single spot of the array
 - Just like you can't be sure that you DON'T have some piece of paper or form unless you look through ALL of your pieces of paper
 - But we ask a question:
 - Could we find an item in an array faster if it were already sorted?

- Number Guessing Game from childhood
 - Remember the game you most likely played as a child
 - I have a secret number between 1 and 100.
 - Make a guess and I'll tell you whether your guess is too high or too low.
 - Then you guess again. The process continues until you guess the correct number.
 - Your job is to MINIMIZE the number of guesses you make.

- Number Guessing Game from childhood
 - What is the first guess of most people?
 - **50.**
 - Why?
 - No matter the response (too high or too low), the most number of possible values for your remaining search is 50 (either from 1-49 or 51-100)
 - Any other first guess results in the risk that the possible remaining values is greater than 50.
 - Example: you guess 75
 - I respond: too high
 - So now you have to guess between 1 and 74
 - 74 values to guess from instead of 50

- Number Guessing Game from childhood
 - Basic Winning Strategy
 - Always guess the number that is halfway between the lowest possible value in your search range and the highest possible value in your search range
- Can we now adapt this idea to work for searching for a given value in an array?

Array Search

We are given the following sorted array:

index	0	1	2	3	4	5	6	7	8
value	2	6	19	27	33	37	38	41	118

- We are searching for the value, 19
- So where is halfway between?
 - One guess would be to look at 2 and 118 and take their average (60).
 - But 60 isn't even in the list
 - And if we look at the number closest to 60
 - It is almost at the end of the array

Array Search

- We quickly realize that if we want to adapt the number guessing game strategy to searching an array, we MUST search in the middle INDEX of the array.
- In this case:
 - The lowest index is 0
 - The highest index is 8
 - So the middle index is 4

Array Search

- Correct Strategy
 - We would ask, "is the number I am searching for, 19, greater or less than the number stored in index 4?
 - Index 4 stores 33
 - The answer would be "less than"
 - So we would modify our search range to in between index 0 and index 3
 - Note that index 4 is no longer in the search space
 - We then continue this process
 - The second index we'd look at is index 1, since (0+3)/2=1
 - Then we'd finally get to index 2, since (2+3)/2 = 2
 - And at index 2, we would find the value, 19, in the array

Binary Search code:

```
int binsearch(int a[], int len, int value) {
       int low = 0, high = len-1;
       while (low <= high) {</pre>
              int mid = (low+high)/2;
              if (value < a[mid])</pre>
                     high = mid-1;
              else if (value > a[mid])
                      low = mid+1;
              else
                      return 1;
       return 0;
```


- Binary Search code:
 - At the end of each array iteration, all we do is update either low or high
 - This modifies our search region
 - Essentially halving it

- Efficiency of Binary Search
 - Analysis:
 - Let's analyze how many comparisons (guesses) are necessary when running this algorithm on an array of n items

First, let's try n = 100

- After 1 guess, we have 50 items left,
- After 2 guesses, we have 25 items left,
- After 3 guesses, we have 12 items left,
- After 4 guesses, we have 6 items left,
- After 5 guesses, we have 3 items left,
- After 6 guesses, we have 1 item left
- After 7 guesses, we have 0 items left.

- Efficiency of Binary Search
 - Analysis:
 - Notes:
 - The reason for the last iteration is because the number of items left represent the number of other possible values to search
 - We need to reduce this to 0.
 - Also, when n is odd, such as when n=25
 - We search the middle element, # 13
 - There are 12 elements smaller than 13
 - And 12 elements bigger than 13
 - This is why the number of items is slightly less than ½ in those cases

- Efficiency of Binary Search
 - Analysis:
 - General case:
 - After 1 guess, we have n/2 items left
 - After 2 guesses, we have n/4 items left
 - After 3 guesses, we have n/8 items left
 - After 4 guesses, we have n/16 items left
 - ...
 - After k guesses, we have n/2^k items left

- Efficiency of Binary Search
 - Analysis:
 - General case:
 - So, after k guesses, we have n/2^k items left
 - The question is:
 - How many k guesses do we need to make in order to find our answer?
 - Or until we have one and only one guess left to make?
 - So we want to get only 1 item left
 - If we can find the value that makes the above fraction equal to 1, then we know that in one more guess, we'll narrow down the item

- Efficiency of Binary Search
 - Analysis:
 - General case:
 - So, after k guesses, we have n/2^k items left
 - Again, we want only 1 item left
 - So set this equal to 1 and solve for k

$$\frac{n}{2^k} = 1 \qquad n = 2^k \qquad k = \log_2 n$$

This means that a binary search roughly takes log₂n comparisons when searching in a sorted array of n items

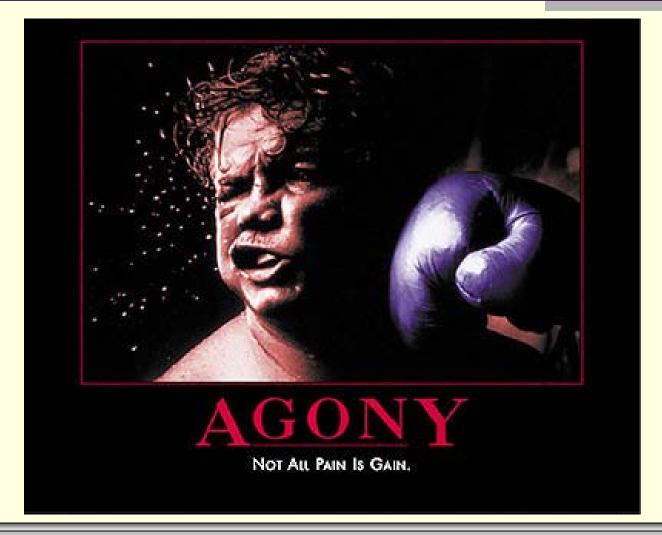
- Efficiency of Binary Search
 - Analysis:
 - Runs in logarithmic (log n) time
 - This is MUCH faster than searching linearly
 - Consider the following chart:

<u>n</u>	<u>log n</u>
8	3
1024	10
65536	16
1048576	20
33554432	25
1073741824	30

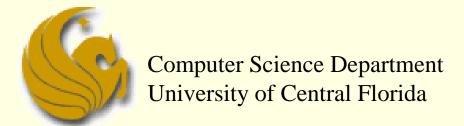
Basically, any log n algorithm is SUPER FAST.

WASN'T THAT INCREDIBLE!

Daily Demotivator



Linear Search vs Binary Search



COP 3502 - Computer Science I