Heaps & Priority Queues

Computer Science Department University of Central Florida

COP 3502 – Computer Science I

- Building a Heap from scratch (a Max heap)
 - Given: an unsorted list of n values
 - **54, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31**
 - How can we build a heap from these values?
 - It is really just a series of "insertions"
 - Simply insert the n elements into the heap in the order that they arrive (in our case, from left to right)
 - WHILE there are more elements:
 - 1) Insert the next element
 - 2) Percolate Up to a suitable position
 - Once all elements are inserted, we have our heap

Building a Heap from scratch (a Max heap)

Given: an unsorted list of n values

54, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31

Building a Heap from scratch (a Max heap) Given: an unsorted list of n values 54, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31

Building a Heap from scratch (a Max heap)

Given: an unsorted list of n values

54, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31

- Running time:
 - How long does it take to do one insertion?
 - We just covered this!
 - An insertion takes O(logn)
 - As in the worst case, it has to Percolate all the way Up to root
 - And we have n elements to insert
 - Running time to make a heap from n elements is O(nlogn)

- Can we do better than O(nlogn) time?
 - Turns out that we can
- Start by arbitrarily placing your elements into a complete binary tree
- Then, starting at the lowest level,
- Perform a Percolate Down (if necessary)
- So we work from the bottom and go up to the root
- Performing a Percolate Down at each node
 - Only if necessary
 - This function is known as <u>Heapify</u>

- Running time:
 - Note:
 - Realize that for any given complete tree, that is completely filled, the lowest level has ½ of the total nodes in a tree
 - In a complete tree of 31 nodes, the lowest level has 16 nodes
 - And since they are already at the lowest level,
 - Those 16 nodes will NOT need to Percolate Down

Building a Heap from scratch

These nodes do NOT have to Percolate Down!

They are already at the bottom most level.

Building a Heap from scratch

Running time:

Note:

- Realize that for any given complete tree, that is completely filled, the lowest level has ½ of the total nodes in a tree
- In a complete tree of 31 nodes, the lowest level has 16 nodes
 - And since they are already at the lowest level,
 - Those 16 nodes will NOT need to Percolate Down
- The level above the 16 nodes has 8 nodes
- What can we say about those 8 nodes?
- Notice that, at MOST, those 8 nodes will have to Percolate Down only one level

Building a Heap from scratch

These nodes only have to Percolate Down one level.

Building a Heap from scratch

Running time:

Note:

- Realize that for any given complete tree, that is completely filled, the lowest level has ½ of the total nodes in a tree
- In a complete tree of 31 nodes, the lowest level has 16 nodes
 - And since they are already at the lowest level,
 - Those 16 nodes will NOT need to Percolate Down
- The level above the 16 nodes has 8 nodes
- What can we say about those 8 nodes?
- Notice that, at MOST, those 8 nodes will have to Percolate Down only one level
- And the level above the 8 nodes has 4 nodes
- Those 4 nodes, at most, percolate down 2 levels, etc, etc.

Building a Heap from scratch

These nodes only have to Percolate Down two levels.

- Running time:
 - So only ½ of the nodes in a tree may need to be percolated down one level or more
 - Only ½ of those (1/4 of the total) may have to be percolated down two or more levels
 - Only ½ of those (1/8 of the total) may have to be percolated down three or more levels, etc., etc.
 - So if we add up the total number of swaps, we get:
 - (1/2)*n + (1/4)*n + (1/8)*n + ... ≈ n
 - So this Heapify function runs in O(n) time

Brief Interlude: FAIL Picture

Daily UCF Bike FAIL

Courtesy of Kyle Perez

Implementing a Binary Heap

Remember:

- a binary heap is a complete binary tree
- So we can implement this binary tree as an array!

How?

- If a tree is "complete",
 - The root would be the 1st position of the array (index 1)
 - The two children of the node would be in index 2 and 3
 - The 4 nodes on the next level would be in index 4 7
 - The 8 nodes on the next level would be in index 8 15
 - and so on

G

Binary Heaps

Implementing a Binary Heap

Notes:

- So we are wanting to implement one ADT
 - A Priority Queue
- To do so, we utilize another ADT
 - A Heap
- And to implement the actual Heap, which, in turn, implements the Priority Queue
 - We use an array!
- So after all of this, we simply use an array
- And the way we dereference the array and manipulate the data is what makes "the array a tree"

An array of data

An array of data

An array of data

An array of data

Implementing a Binary Heap

- We are only concerned with the front part of the array
- If the tree has 5 nodes, then we only care about the first five spots of the array

Implementing a Binary Heap

- The links between the tree's nodes are not stored as pointers
- The only way we "know" that the "array is a tree" is based on how we choose to manipulate the array

42	35	23	27	21		
----	----	----	----	----	--	--

An array of data

42	35	23	27	21		
[1]	[2]	[3]	[4]	[5]	[6]	

Implementing a Binary Heap The name of our array is A[] Root is at position A[1] Left child of A[i] = A[2i] Right child of A[i] = A[2i+1] Parent of A[i] = A[i/2]

42	35	23	27	21		
[1]	[2]	[3]	[4]	[5]	[6]	

Implementing a Binary Heap

Example:

Consider node 17:

- Position in the array: 5
- It's parent is 10, and is located at position [5/2] = 2
- 17's left child is node 34, and located at position 5*2 = 10
- 17 has no right child. Position (2*5 + 1) = 11 (empty)

Heapsort

- We can use heaps to sort our data
- Here's the algorithm:
 - Build a heap with all the n items
 - Takes O(n) time (cuz we add to a binary tree and run <u>Heapify</u>)
 - Extract the minimum item (if a Min-heap)
 - O(1)
 - Fix the heap after extraction
 - O(logn)
 - Perform this extraction n times for all the elements
 - Store these removed items, sequentially, in an array
 - Running time: O(nlogn)

Summary:

- A binary heap is a tree that satisfies 2 properties:
 - The Heap Property
 - Max-heap OR Min-heap
 - The Shape Property
 - Must be a complete binary tree
- To add elements to a heap
 - Place element at next available spot and Percolate Up
- To remove elements from a heap,
 - Delete root, as it is always the one you want to remove
 - Then copy last element to root's position
 - Finally, Percolate Down

S

Binary Heaps

Sumary:

- The purpose of a heap is essentially to implement a Priority Queue
- So we use one ADT to implement another ADT
- And then, at the end of it all, we simply implement the Heap as an array!
 - We know our array is a Heap (a tree) based on how we dereference the array and how we choose to manipulate the data

Binary Heaps & Priority Queues

WASN'T ΤΗΑΤ **PRODIGIOUS!**

Daily Demotivator

© DESPAIR.COM

INCOMPETENCE

WHEN YOU EARNESTLY BELIEVE YOU CAN COMPENSATE FOR A LACK OF SKILL BY DOUBLING YOUR EFFORTS, THERE'S NO END TO WHAT YOU CAN'T DO.

Heaps & Priority Queues

Computer Science Department University of Central Florida

COP 3502 – Computer Science I