
Computer Science Department
University of Central Florida

Heaps &
Priority Queues

COP 3502 – Computer Science I

Binary Heaps & Priority Queues page 2

Binary Heaps

 Building a Heap from scratch (a Max heap)
 Given: an unsorted list of n values

 54, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31
 How can we build a heap from these values?

 It is really just a series of “insertions”
 Simply insert the n elements into the heap in the order

that they arrive (in our case, from left to right)
 WHILE there are more elements:

1) Insert the next element
2) Percolate Up to a suitable position

 Once all elements are inserted, we have our heap

Binary Heaps & Priority Queues page 3

Binary Heaps

 Building a Heap from scratch (a Max heap)
 Given: an unsorted list of n values

 54, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31
54 54

87

87

54

87

54 27

87

54 27

67

87

67 27

54

87

67 27

54 19

Binary Heaps & Priority Queues page 4

Binary Heaps

 Building a Heap from scratch (a Max heap)
 Given: an unsorted list of n values

 54, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31

27

87

67

54 19

31

87

67

54 19 2731

Binary Heaps & Priority Queues page 5

Binary Heaps

 Building a Heap from scratch (a Max heap)
 Given: an unsorted list of n values

 54, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31

18

31

87

67

54 19 27 29

31

87

67

54 19 27 29

32

Binary Heaps & Priority Queues page 6

Binary Heaps

 Building a Heap from scratch
 Running time:

 How long does it take to do one insertion?
 We just covered this!
 An insertion takes O(logn)

 As in the worst case, it has to Percolate all the way Up to root

 And we have n elements to insert
 Running time to make a heap from n elements is

O(nlogn)

Binary Heaps & Priority Queues page 7

Binary Heaps

 Building a Heap from scratch
 Can we do better than O(nlogn) time?

 Turns out that we can

 Start by arbitrarily placing your elements into a
complete binary tree

 Then, starting at the lowest level,
 Perform a Percolate Down (if necessary)
 So we work from the bottom and go up to the root
 Performing a Percolate Down at each node

 Only if necessary

 This function is known as Heapify

Binary Heaps & Priority Queues page 8

Binary Heaps

 Building a Heap from scratch
 Running time:

 Note:
 Realize that for any given complete tree, that is completely

filled, the lowest level has ½ of the total nodes in a tree
 In a complete tree of 31 nodes, the lowest level has 16 nodes

 And since they are already at the lowest level,
 Those 16 nodes will NOT need to Percolate Down

Binary Heaps & Priority Queues page 9

Binary Heaps

 Building a Heap from scratch

These nodes do
NOT have to
Percolate Down!

They are already
at the bottom
most level.

Binary Heaps & Priority Queues page 10

Binary Heaps

 Building a Heap from scratch
 Running time:

 Note:
 Realize that for any given complete tree, that is completely

filled, the lowest level has ½ of the total nodes in a tree
 In a complete tree of 31 nodes, the lowest level has 16 nodes

 And since they are already at the lowest level,
 Those 16 nodes will NOT need to Percolate Down

 The level above the 16 nodes has 8 nodes
 What can we say about those 8 nodes?
 Notice that, at MOST, those 8 nodes will have to Percolate

Down only one level

Binary Heaps & Priority Queues page 11

Binary Heaps

 Building a Heap from scratch

These nodes
only have to
Percolate Down
one level.

Binary Heaps & Priority Queues page 12

Binary Heaps

 Building a Heap from scratch
 Running time:

 Note:
 Realize that for any given complete tree, that is completely

filled, the lowest level has ½ of the total nodes in a tree
 In a complete tree of 31 nodes, the lowest level has 16 nodes

 And since they are already at the lowest level,
 Those 16 nodes will NOT need to Percolate Down

 The level above the 16 nodes has 8 nodes
 What can we say about those 8 nodes?
 Notice that, at MOST, those 8 nodes will have to Percolate

Down only one level
 And the level above the 8 nodes has 4 nodes
 Those 4 nodes, at most, percolate down 2 levels, etc, etc.

Binary Heaps & Priority Queues page 13

Binary Heaps

 Building a Heap from scratch

These nodes
only have to
Percolate Down
two levels.

Binary Heaps & Priority Queues page 14

Binary Heaps

 Building a Heap from scratch
 Running time:

 So only ½ of the nodes in a tree may need to be
percolated down one level or more

 Only ½ of those (1/4 of the total) may have to be
percolated down two or more levels

 Only ½ of those (1/8 of the total) may have to be
percolated down three or more levels, etc., etc.

 So if we add up the total number of swaps, we get:
 (1/2)*n + (1/4)*n + (1/8)*n + … ≈ n
 So this Heapify function runs in O(n) time

Binary Heaps & Priority Queues page 15

Brief Interlude: FAIL Picture

Binary Heaps & Priority Queues page 16

Daily UCF Bike FAIL

Courtesy of
Kyle Perez

Binary Heaps & Priority Queues page 17

Binary Heaps

 Implementing a Binary Heap
 Remember:

 a binary heap is a complete binary tree

 So we can implement this binary tree as an array!
 How?

 If a tree is “complete”,
 The root would be the 1st position of the array (index 1)
 The two children of the node would be in index 2 and 3
 The 4 nodes on the next level would be in index 4 – 7
 The 8 nodes on the next level would be in index 8 - 15
 and so on

Binary Heaps & Priority Queues page 18

Binary Heaps

 Implementing a Binary Heap
 Notes:

 So we are wanting to implement one ADT
 A Priority Queue

 To do so, we utilize another ADT
 A Heap

 And to implement the actual Heap, which, in turn,
implements the Priority Queue
 We use an array!

 So after all of this, we simply use an array
 And the way we dereference the array and manipulate

the data is what makes “the array a tree”

Binary Heaps & Priority Queues page 19

 Implementing a Binary Heap

 We store the data
from the nodes in a
partially-filled array.

Binary Heaps

An array of data

2127

23

42

35

Binary Heaps & Priority Queues page 20

 Implementing a Binary Heap

 Data from the root
goes in the first
location of
the array.

Binary Heaps

An array of data

2127

23

42

35

42

Binary Heaps & Priority Queues page 21

 Implementing a Binary Heap

 Data from the next row
goes in the next two
array locations.

Binary Heaps

An array of data

2127

23

42

35

42 35 23

Binary Heaps & Priority Queues page 22

 Implementing a Binary Heap

 And now the next level,
or next four nodes of
the tree, would go
into the array

 We only have
two nodes

Binary Heaps

An array of data

2127

23

42

35

42 35 23 27 21

Binary Heaps & Priority Queues page 23

 Implementing a Binary Heap

 We are only concerned with
the front part of the array

 If the tree has 5 nodes, then
we only care about the first
five spots of the array

Binary Heaps

An array of data

2127

23

42

35

42 35 23 27 21

We don't care what's in this part of the array.

Binary Heaps & Priority Queues page 24

 Implementing a Binary Heap

 The links between the tree’s
nodes are not stored as pointers

 The only way we “know” that
the “array is a tree” is based
on how we choose to
manipulate the array

Binary Heaps

An array of data

2127

23

42

35

42 35 23 27 21

Binary Heaps & Priority Queues page 25

 Implementing a Binary Heap

 If you know the index of a node,
then it is easy to figure out the
index of that node’s parent
or children

Binary Heaps

2127

23

42

35

42 35 23 27 21

[1] [2] [3] [4] [5] [6]

Binary Heaps & Priority Queues page 26

 Implementing a Binary Heap

 The name of our array is A[]
 Root is at position A[1]
 Left child of A[i] = A[2i]
 Right child of A[i] = A[2i+1]
 Parent of A[i] = A[i/2]

Binary Heaps

2127

23

42

35

42 35 23 27 21

[1] [2] [3] [4] [5] [6]

Binary Heaps & Priority Queues page 27

 Implementing a Binary Heap
 Example:

Binary Heaps

6

10
12

15 17 18 23

20 19 34

Binary Heaps & Priority Queues page 28

 Implementing a Binary Heap
 Example:

 Consider node 17:
 Position in the array: 5
 It’s parent is 10, and is located at position [5/2] = 2
 17’s left child is node 34, and located at position 5*2 = 10
 17 has no right child. Position (2*5 + 1) = 11 (empty)

Binary Heaps

6 10 12 15 17 18 23 20 19 34

Binary Heaps & Priority Queues page 29

Binary Heaps

 Heapsort
 We can use heaps to sort our data
 Here’s the algorithm:

 Build a heap with all the n items
 Takes O(n) time (cuz we add to a binary tree and run Heapify)

 Extract the minimum item (if a Min-heap)
 O(1)

 Fix the heap after extraction
 O(logn)

 Perform this extraction n times for all the elements
 Store these removed items, sequentially, in an array
 Running time: O(nlogn)

Binary Heaps & Priority Queues page 30

Binary Heaps

 Summary:
 A binary heap is a tree that satisfies 2 properties:

 The Heap Property
 Max-heap OR Min-heap

 The Shape Property
 Must be a complete binary tree

 To add elements to a heap
 Place element at next available spot and Percolate Up

 To remove elements from a heap,
 Delete root, as it is always the one you want to remove
 Then copy last element to root’s position
 Finally, Percolate Down

Binary Heaps & Priority Queues page 31

Binary Heaps

 Sumary:
 The purpose of a heap is essentially to implement

a Priority Queue
 So we use one ADT to implement another ADT
 And then, at the end of it all, we simply implement

the Heap as an array!
 We know our array is a Heap (a tree) based on how we

dereference the array and how we choose to manipulate
the data

Binary Heaps & Priority Queues page 32

Binary Heaps & Priority Queues

WASN’T
THAT

PRODIGIOUS!

Binary Heaps & Priority Queues page 33

Daily Demotivator

Computer Science Department
University of Central Florida

Heaps &
Priority Queues

COP 3502 – Computer Science I

	Heaps &�Priority Queues
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Brief Interlude: FAIL Picture
	Daily UCF Bike FAIL
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps & Priority Queues
	Daily Demotivator
	Heaps &�Priority Queues

