
Computer Science Department
University of Central Florida

Heaps &
Priority Queues

COP 3502 – Computer Science I

Binary Heaps & Priority Queues page 2

Binary Heaps

 Building a Heap from scratch (a Max heap)
 Given: an unsorted list of n values

 54, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31
 How can we build a heap from these values?

 It is really just a series of “insertions”
 Simply insert the n elements into the heap in the order

that they arrive (in our case, from left to right)
 WHILE there are more elements:

1) Insert the next element
2) Percolate Up to a suitable position

 Once all elements are inserted, we have our heap

Binary Heaps & Priority Queues page 3

Binary Heaps

 Building a Heap from scratch (a Max heap)
 Given: an unsorted list of n values

 54, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31
54 54

87

87

54

87

54 27

87

54 27

67

87

67 27

54

87

67 27

54 19

Binary Heaps & Priority Queues page 4

Binary Heaps

 Building a Heap from scratch (a Max heap)
 Given: an unsorted list of n values

 54, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31

27

87

67

54 19

31

87

67

54 19 2731

Binary Heaps & Priority Queues page 5

Binary Heaps

 Building a Heap from scratch (a Max heap)
 Given: an unsorted list of n values

 54, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31

18

31

87

67

54 19 27 29

31

87

67

54 19 27 29

32

Binary Heaps & Priority Queues page 6

Binary Heaps

 Building a Heap from scratch
 Running time:

 How long does it take to do one insertion?
 We just covered this!
 An insertion takes O(logn)

 As in the worst case, it has to Percolate all the way Up to root

 And we have n elements to insert
 Running time to make a heap from n elements is

O(nlogn)

Binary Heaps & Priority Queues page 7

Binary Heaps

 Building a Heap from scratch
 Can we do better than O(nlogn) time?

 Turns out that we can

 Start by arbitrarily placing your elements into a
complete binary tree

 Then, starting at the lowest level,
 Perform a Percolate Down (if necessary)
 So we work from the bottom and go up to the root
 Performing a Percolate Down at each node

 Only if necessary

 This function is known as Heapify

Binary Heaps & Priority Queues page 8

Binary Heaps

 Building a Heap from scratch
 Running time:

 Note:
 Realize that for any given complete tree, that is completely

filled, the lowest level has ½ of the total nodes in a tree
 In a complete tree of 31 nodes, the lowest level has 16 nodes

 And since they are already at the lowest level,
 Those 16 nodes will NOT need to Percolate Down

Binary Heaps & Priority Queues page 9

Binary Heaps

 Building a Heap from scratch

These nodes do
NOT have to
Percolate Down!

They are already
at the bottom
most level.

Binary Heaps & Priority Queues page 10

Binary Heaps

 Building a Heap from scratch
 Running time:

 Note:
 Realize that for any given complete tree, that is completely

filled, the lowest level has ½ of the total nodes in a tree
 In a complete tree of 31 nodes, the lowest level has 16 nodes

 And since they are already at the lowest level,
 Those 16 nodes will NOT need to Percolate Down

 The level above the 16 nodes has 8 nodes
 What can we say about those 8 nodes?
 Notice that, at MOST, those 8 nodes will have to Percolate

Down only one level

Binary Heaps & Priority Queues page 11

Binary Heaps

 Building a Heap from scratch

These nodes
only have to
Percolate Down
one level.

Binary Heaps & Priority Queues page 12

Binary Heaps

 Building a Heap from scratch
 Running time:

 Note:
 Realize that for any given complete tree, that is completely

filled, the lowest level has ½ of the total nodes in a tree
 In a complete tree of 31 nodes, the lowest level has 16 nodes

 And since they are already at the lowest level,
 Those 16 nodes will NOT need to Percolate Down

 The level above the 16 nodes has 8 nodes
 What can we say about those 8 nodes?
 Notice that, at MOST, those 8 nodes will have to Percolate

Down only one level
 And the level above the 8 nodes has 4 nodes
 Those 4 nodes, at most, percolate down 2 levels, etc, etc.

Binary Heaps & Priority Queues page 13

Binary Heaps

 Building a Heap from scratch

These nodes
only have to
Percolate Down
two levels.

Binary Heaps & Priority Queues page 14

Binary Heaps

 Building a Heap from scratch
 Running time:

 So only ½ of the nodes in a tree may need to be
percolated down one level or more

 Only ½ of those (1/4 of the total) may have to be
percolated down two or more levels

 Only ½ of those (1/8 of the total) may have to be
percolated down three or more levels, etc., etc.

 So if we add up the total number of swaps, we get:
 (1/2)*n + (1/4)*n + (1/8)*n + … ≈ n
 So this Heapify function runs in O(n) time

Binary Heaps & Priority Queues page 15

Brief Interlude: FAIL Picture

Binary Heaps & Priority Queues page 16

Daily UCF Bike FAIL

Courtesy of
Kyle Perez

Binary Heaps & Priority Queues page 17

Binary Heaps

 Implementing a Binary Heap
 Remember:

 a binary heap is a complete binary tree

 So we can implement this binary tree as an array!
 How?

 If a tree is “complete”,
 The root would be the 1st position of the array (index 1)
 The two children of the node would be in index 2 and 3
 The 4 nodes on the next level would be in index 4 – 7
 The 8 nodes on the next level would be in index 8 - 15
 and so on

Binary Heaps & Priority Queues page 18

Binary Heaps

 Implementing a Binary Heap
 Notes:

 So we are wanting to implement one ADT
 A Priority Queue

 To do so, we utilize another ADT
 A Heap

 And to implement the actual Heap, which, in turn,
implements the Priority Queue
 We use an array!

 So after all of this, we simply use an array
 And the way we dereference the array and manipulate

the data is what makes “the array a tree”

Binary Heaps & Priority Queues page 19

 Implementing a Binary Heap

 We store the data
from the nodes in a
partially-filled array.

Binary Heaps

An array of data

2127

23

42

35

Binary Heaps & Priority Queues page 20

 Implementing a Binary Heap

 Data from the root
goes in the first
location of
the array.

Binary Heaps

An array of data

2127

23

42

35

42

Binary Heaps & Priority Queues page 21

 Implementing a Binary Heap

 Data from the next row
goes in the next two
array locations.

Binary Heaps

An array of data

2127

23

42

35

42 35 23

Binary Heaps & Priority Queues page 22

 Implementing a Binary Heap

 And now the next level,
or next four nodes of
the tree, would go
into the array

 We only have
two nodes

Binary Heaps

An array of data

2127

23

42

35

42 35 23 27 21

Binary Heaps & Priority Queues page 23

 Implementing a Binary Heap

 We are only concerned with
the front part of the array

 If the tree has 5 nodes, then
we only care about the first
five spots of the array

Binary Heaps

An array of data

2127

23

42

35

42 35 23 27 21

We don't care what's in this part of the array.

Binary Heaps & Priority Queues page 24

 Implementing a Binary Heap

 The links between the tree’s
nodes are not stored as pointers

 The only way we “know” that
the “array is a tree” is based
on how we choose to
manipulate the array

Binary Heaps

An array of data

2127

23

42

35

42 35 23 27 21

Binary Heaps & Priority Queues page 25

 Implementing a Binary Heap

 If you know the index of a node,
then it is easy to figure out the
index of that node’s parent
or children

Binary Heaps

2127

23

42

35

42 35 23 27 21

[1] [2] [3] [4] [5] [6]

Binary Heaps & Priority Queues page 26

 Implementing a Binary Heap

 The name of our array is A[]
 Root is at position A[1]
 Left child of A[i] = A[2i]
 Right child of A[i] = A[2i+1]
 Parent of A[i] = A[i/2]

Binary Heaps

2127

23

42

35

42 35 23 27 21

[1] [2] [3] [4] [5] [6]

Binary Heaps & Priority Queues page 27

 Implementing a Binary Heap
 Example:

Binary Heaps

6

10
12

15 17 18 23

20 19 34

Binary Heaps & Priority Queues page 28

 Implementing a Binary Heap
 Example:

 Consider node 17:
 Position in the array: 5
 It’s parent is 10, and is located at position [5/2] = 2
 17’s left child is node 34, and located at position 5*2 = 10
 17 has no right child. Position (2*5 + 1) = 11 (empty)

Binary Heaps

6 10 12 15 17 18 23 20 19 34

Binary Heaps & Priority Queues page 29

Binary Heaps

 Heapsort
 We can use heaps to sort our data
 Here’s the algorithm:

 Build a heap with all the n items
 Takes O(n) time (cuz we add to a binary tree and run Heapify)

 Extract the minimum item (if a Min-heap)
 O(1)

 Fix the heap after extraction
 O(logn)

 Perform this extraction n times for all the elements
 Store these removed items, sequentially, in an array
 Running time: O(nlogn)

Binary Heaps & Priority Queues page 30

Binary Heaps

 Summary:
 A binary heap is a tree that satisfies 2 properties:

 The Heap Property
 Max-heap OR Min-heap

 The Shape Property
 Must be a complete binary tree

 To add elements to a heap
 Place element at next available spot and Percolate Up

 To remove elements from a heap,
 Delete root, as it is always the one you want to remove
 Then copy last element to root’s position
 Finally, Percolate Down

Binary Heaps & Priority Queues page 31

Binary Heaps

 Sumary:
 The purpose of a heap is essentially to implement

a Priority Queue
 So we use one ADT to implement another ADT
 And then, at the end of it all, we simply implement

the Heap as an array!
 We know our array is a Heap (a tree) based on how we

dereference the array and how we choose to manipulate
the data

Binary Heaps & Priority Queues page 32

Binary Heaps & Priority Queues

WASN’T
THAT

PRODIGIOUS!

Binary Heaps & Priority Queues page 33

Daily Demotivator

Computer Science Department
University of Central Florida

Heaps &
Priority Queues

COP 3502 – Computer Science I

	Heaps &�Priority Queues
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Brief Interlude: FAIL Picture
	Daily UCF Bike FAIL
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps & Priority Queues
	Daily Demotivator
	Heaps &�Priority Queues

