Sorting: Quick Sort

Computer Science Department University of Central Florida

COP 3502 - Computer Science I

Sorting: Quick Sort

- Quick Sort
- Most common sort used in practice
- Why?
- cuz it is usually the quickest in practice!
- Quick Sort uses two main ideas to achieve this efficiency:

1) The idea of making partitions
2) Recursion

- Let's look at the partition concept...

Sorting: Quick Sort

- Quick Sort - Partition
- A partition works as follows:
- Given an array of n elements
- You must manually select an element in the array to partition by
- You must then compare ALL the remaining elements against this element
- If they are greater,
- Put them to the "right" of the partition element
- If they are less,
- Put them to the "left" of the partition element

Sorting: Quick Sort

- Quick Sort - Partition
- A partition works as follows:
- Once the partition is complete, what can we say about the position of the partition element?
- We can say (we KNOW) that the partition element is in its CORRECTLY sorted location
- In fact, after you partition the array, you are left with:
- all the elements to the left of the partition element, in the array, that still need to be sorted
- all the elements to the right of the partition element, in the array, that still need to be sorted
- And if you sort those two sides, the entire array will be sorted!

Sorting: Quick Sort

- Quick Sort
- Partition:
- Essentially breaks down the sorting problem into two smaller sorting problems
- ...what does that sound like?
- Code for Quick Sort (at a real general level):

1) Partition the array with respect to a random element
2) Sort the left part of the array using Quick Sort
3) Sort the right part of the array using Quick Sort

- Notice there is no "merge" step like in Merge Sort
- at the end, all elements are already in their proper order

Sorting: Quick Sort

- Quick Sort
- Code for Quick Sort (at a real general level):

1) Partition the array with respect to a random element
2) Sort the left part of the array using Quick Sort
3) Sort the right part of the array using Quick Sort

- Quick Sort is a recursive algorithm:
- We need a base case
- A case that does NOT make recursive calls
- Our base case, or terminating condition, will be when we sort an array with only one element
- We know the array is already sorted!

Sorting: Quick Sort

- Quick Sort
- Let S be the input set.

1. If $|S|=0$ or $|S|=1$, then return.
2. Pick an element v in S. Call v the partition element.
3. Partition $\mathrm{S}-\{v\}$ into two disjoint groups:

- $S_{1}=\{x \in S-\{v\} \mid x \leq v\}$
- $S_{2}=\{x \in S-\{v\} \mid x \geq v\}$

4. Return $\left\{\right.$ quicksort($\left.\mathrm{S}_{1}\right), v$, quicksort $\left(\mathrm{S}_{2}\right)$ \}

Sorting: Quick Sort

combine

| 2 | 6 | 10 | 12 | 17 | 18 | 32 | 35 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | 37 | Sorting: Quick Sort |
| :---: | :---: |
| page 8 |

Sorting: Quick Sort

- The idea of "in place"
- In Computer Science, an "in-place" algorithm is one where the output usually overwrites the input
- There is more detail, but for our purposes, we stop with that
- Example:
- Say we wanted to reverse an array of n items
- Here is a simple way to do that:

Sorting: Quick Sort

- The idea of "in place"
- Example:
- Say we wanted to reverse an array of n items
- Here is a simple way to do that:

```
function reverse(a[0..n]) {
    allocate b[0..n]
    for i from 0 to n
        b[n - i] = a[i]
    return b
}
```

- Unfortunately, this method requires O(n) extra space to create the array b
- And allocation can be a slow operation

Sorting: Quick Sort

- The idea of "in place"
- Example:
- Say we wanted to reverse an array of n items
- If we no longer need the original array a
- We can overwrite it using the following in-place algorithm

```
function reverse-in-place(a[0..n])
    for i from 0 to floor(n/2)
        swap(a[i], a[n-i])
```

- Many Sorting algorithms are in-place algorithms
- Quick sort is NOT an in-place algorithm
- BUT, the Partition algorithm can be in-place

Sorting: Quick Sort

- How to Partition "in-place"
- Consider the following list of values that we want to partition

5	3	6	9	2	4	7	8

- Let us assume for the time being that we will partition based on the first element in the array
- The algorithm will partition these elements "in-place"

Sorting: Quick Sort

- How to Partition "in-place"

- Here's how the partition will work:
- Start two counters, one at index one and one at index 7
- The last element in the array
- Advance the left counter forward until an element greater than the partition element is encountered
- Advance the right counter backwards until a value less than the pivot is encountered

Sorting: Quick Sort

- How to Partition "in-place"

- After these two steps are performed, we have:

Sorting: Quick Sort

- How to Partition "in-place"

- We know that these two elements are on the "wrong" side of the array ...so SWAP them!

Sorting: Quick Sort

- How to Partition "in-place"

- Now continue to advance the pointers as before

Sorting: Quick Sort

- How to Partition "in-place"

Then SWAP as before:

- At some point, the counters will cross over each other

Sorting: Quick Sort

- How to Partition "in-place"

- Again, advance the pointers as before

- So we see that the counters crossed over each other

Sorting: Quick Sort

- How to Partition "in-place"

- Now, SWAP the value stored in the original right counter (black arrow) with the partition element

- Finally, RETURN the index the five is stored in (the right pointer) to indicate where the partition element ended up

Sorting: Quick Sort

- Partition Code

```
int partition(int* vals, int low, int high) {
    int temp;
    int i, lowpos;
    // A base case that should never really occur.
    if (low == high) return low;
    // Pick a random partition element and swap it into index low.
    i = low + rand()%(high-low+1);
    temp = vals[i];
    vals[i] = vals[low];
    vals[low] = temp;
    // Store the index of the partition element.
    lowpos = low;
    // Update our low pointer.
    low++;
```


Sorting: Quick Sort

- Partition Code

```
// Run Partition so long as low and high counters don't cross.
while (low <= high) {
    // Move the low pointer forwards.
    while (low <= high && vals[low] <= vals[lowpos]) low++;
    // Move the high pointer backwards.
    while (high >= low && vals[high] > vals[lowpos]) high--;
    // Now swap the values at those two pointers.
    if (low < high)
        swap(&vals[low], &vals[high]);
}
// Swap the partition element into it's correct location.
swap(&vals[lowpos], &vals[high]);
return high; // Return the index of the partition element.
```


Sorting: Quick Sort

- Quick Sort Code

```
void quicksort(int* numbers, int low, int high) {
    // Only have to sort if we are sorting more than one number
    if (low < high) {
    // Partition the elements
    // Parition function returns the index of the
    // partition element. Saved into "split".
    int split = partition(numbers,low,high);
    // Recursively Quick Sort the left side
    quicksort(numbers,low, split-1);
    // Recursively Quick Sort the right side
    quicksort(numbers,split+1,high);
    }
}
```


Sorting: Quick Sort

- Choosing a Partition Element
- For correctness, we can choose any pivot.
- For efficiency, one of following is best case, the other worst case:
- pivot partitions the list roughly in half
- pivot is greatest or least element in list
- Which case above is best?
- Clearly, a partition element in the middle is ideal
- As it splits the list roughly in half
- But we don't know where that element is
- So we have a few ways of choosing pivots

Sorting: Quick Sort

- Choosing a Partition Element
- first element
- bad if input is sorted or in reverse sorted order
- bad if input is nearly sorted
- variation: particular element (e.g. middle element)
- random element
- You could get lucky and choose the middle element
- You could be unlucky and choose the smallest or greatest element
- Resulting in a partition with ZERO elements on one side
- median of three elements
- choose the median of the left, right, and center elements

Sorting: Quick Sort

- Choosing a Partition Element
- median of three elements
- choose the median of the left, right, and center elements
- There is extra expense with this method
- Picking three values
- Doing three comparisons
- But if the array is large, doing this little extra work will be small compared to the gains of a better partition
- You could also pick the median of 5 or 7 elements
- The more you pick the better partition you get

Brief Interlude: FAIL Picture

Daily UCF Bike Fail

Finding new and innovative ways to get your bike stolen!

Courtesy of
Benjamin Stanchina

Sorting: Quick Sort

- Quick Sort Analysis

- This is more difficult to do than Merge Sort
- Why?
- With Merge Sort, we knew that our recursive calls always had equal sized inputs
- Remember: we would split the array of size n into two arrays of size $\mathrm{n} / 2$ (so the smaller arrays were always the same size)
- How is Quick Sort different? (more difficult?)
- Each recursive call of Quick Sort could have a different sized set of numbers to sort
- Because the size of the sets is based on our partition element
- If partition element is in the middle, each set has about half
- Otherwise, one set is large and one is small

Sorting: Quick Sort

- Quick Sort Analysis
- Location of partition element determines difficulty

1) If we get lucky

- and the partition element is ALWAYS in the middle:
- Then this is the BEST case
- As we will always be halving the amount of work left

2) If we are unlucky:

- and we ALWAYS choose the first or the last element in the list as our partition
- Then this is the WORST case
- As we will have not really sorted anything
- We simply reduced the 2-be-sorted amount by 1

Sorting: Quick Sort

- Quick Sort Analysis
- Location of partition element determines difficulty

3) If we are neither lucky or unlucky:

- Most likely, we will have some great partitions
- Some bad partitions
- And some okay partitions
- So we need to analyze each case:
- Best case
- Average case
- Worst case

And we omit the Average Case due to its difficulty.
*You'll get to see it in CS2.

Sorting: Quick Sort

- Quick Sort Analysis
- Analysis of Best Case:
- As mentioned, in the best case, we get a perfect partition every single time
- Meaning, if we have n elements before the partition,
- we "luckily" pick the middle element as the partition element
- Then we end up with $\mathrm{n} / 2$ - 1 elements on each side of the partition
- So if we had 101 unsorted elements
" we "luckily" pick the $51{ }^{\text {st }}$ element as the partition element
- Then we end up with 50 elements smaller than this element, on the left
- And 50 elements, greater than this element, on the right

Sorting: Quick Sort

- Quick Sort Analysis
- Analysis of Best Case:
- Again, here are the steps of Quick Sort:

1) Partition the elements
2) Quick Sort the smaller half (recursive)
3) Quick Sort the larger half (recursive)

- So at each recursive step, the input size is halved
- Let $T(n)$ be the running time of Quick Sort on n elements
- And remember that Partition runs on O(n) time
- So we get our recurrence relation for the best case:
- $T(n)=2 \star T(n / 2)+O(n)$
- This is the same recurrence relation as Merge Sort
- So in the best case, Quick Sort runs in O(nlogn) time

Sorting: Quick Sort

- Quick Sort Analysis

- Analysis of Worst Case:
- Assume that we are horribly unlucky
- And when choosing the partition element, we somehow end up always choosing the greatest value remaining
- Now for this worst case:
- How many times will the Partition function run?
- Think: when we choose the greatest element (for example)
- We have the partition element, then ALL other elements are to the left in one partition
- The "partition" to the right will have ZERO elements
- So Partition will run n-1 times
- The first time results in comparing $n-1$ values, then comparing $\mathrm{n}-2$ values the second time, followed by $\mathrm{n}-3$, etc.

Sorting: Quick Sort

- Quick Sort Analysis

- Analysis of Worst Case:
- How many times will the Partition function run?
- Partition will run n-1 times
- The first time results in comparing n-1 values, then comparing $\mathrm{n}-2$ values the second time, followed by $\mathrm{n}-3$, etc.
- When we sum the number of compares, we get:
- $1+2+3+\ldots+(n-1)$
- You should know what this equals:

$$
\frac{(n-1) n}{2}
$$

- Thus, the worst case running time is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Sorting: Quick Sort

■ Quick Sort Analysis

- Summary:
- Best Case: O(nlogn)
- Average Case: O(nlogn)
- Worst Case: O(n²)
- Compare Merge Sort and Quick Sort:
- Merge Sort: guaranteed O(nlogn)
- Quick Sort: best and average case is O(nlogn) but worst case is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Sorting: Quick Sort

WASN'T

THAT

THE GREATEST!

Daily Demotivator

Sorting: Quick Sort

Computer Science Department University of Central Florida

COP 3502 - Computer Science I

