
Computer Science Department
University of Central Florida

Binary Trees

COP 3502 – Computer Science I

Binary Trees page 2© Jonathan Cazalas

Announcements

 Quiz 4 is today
 What does it cover?
 Check Webcourses.

 Program 4 was assigned last week
 Due in 1 week

 July 6th

Binary Trees page 3© Jonathan Cazalas

Outline

 Tree Stuff
 Trees
 Binary Trees
 Implementation of a Binary Tree

 Tree Traversals – Depth First
 Preorder
 Inorder
 Postorder

 Breadth First Tree Traversal
 Binary Search Trees

Binary Trees page 4© Jonathan Cazalas

Tree Stuff

 Trees:
 Another Abstract Data Type
 Data structure made of nodes and pointers

 Much like a linked list
 The difference between the two is how they are organized.

 A linked list represents a linear structure
 A predecessor/successor relationship between the nodes of

the list
 A tree represents a hierarchical relationship between

the nodes (ancestral relationship)
 A node in a tree can have several successors, which we refer

to as children
 A nodes predecessor would be its parent

Binary Trees page 5© Jonathan Cazalas

Tree Stuff

 Trees:
 General Tree Information:

 Top node in a tree is called the root
 the root node has no parent above it…cuz it’s the root!

 Every node in the tree can have “children” nodes
 Each child node can, in turn, be a parent to its children and

so on
 Nodes having no children are called leaves
 Any node that is not a root or a leaf is an interior

node
 The height of a tree is defined to be the length of the

longest path from the root to a leaf in that tree.
 A tree with only one node (the root) has a height of zero.

Binary Trees page 6© Jonathan Cazalas

Tree Stuff

 Trees:
 Here’s a purty picture of a tree:

 2 is the root
 2, 5, 11, and 4 are leaves
 7, 5, 6, and 9 are interior

nodes

Binary Trees page 7© Jonathan Cazalas

Tree Stuff

 Binary Trees:
 A tree in which each node can have a maximum of

two children
 Each node can have no child, one child, or two children
 And a child can only have one parent
 Pointers help us to identify if it is a right child or a left one

Examples of two
Binary Trees:

Binary Trees page 8© Jonathan Cazalas

Tree Stuff

 Examples of trees that are NOT Binary Trees:

Binary Trees page 9© Jonathan Cazalas

Tree Stuff

 More Binary Tree Goodies:
 A full binary tree:

 Every node, other than the leaves, has two children

a

b c

d e

g h

g, h, e, and c are
leaves: so they
have no children.

Binary Trees page 10© Jonathan Cazalas

Tree Stuff

 More Binary Tree Goodies:
 A complete binary tree:

 Every level, except possibly the last, is completely
filled, and all nodes are as far left as possible.

Binary Trees page 11© Jonathan Cazalas

Tree Stuff

 More Binary Tree Goodies:
 The root of the tree is at level 0
 The level of any other node in the tree is one

more than the level of its parent
 Total # of nodes (n) in a

complete binary tree:
 n = 2h+1 – 1 (maximum)

 Height (h) of the tree:
 h = log((n + 1)/2)
 If we have 15 nodes
 h = log(16/2) = log(8) = 3

Binary Trees page 12© Jonathan Cazalas

Tree Stuff

 Implementation of a Binary Tree:
 A binary tree has a natural implementation using

linked storage
 Each node of a binary tree has both left and

right subtrees that can be reached with pointers:

left_child data right_childstruct tree_node {
int data;
struct tree_node *left_child;
struct tree_node *right_child;

}

Binary Trees page 13© Jonathan Cazalas

Tree Traversals – Depth First

 Traversal of Binary Trees:
 We need a way of zipping through a tree for

searching, inserting, etc.
 But how can we do this?
 If you remember…

 Linked lists are traversed from the head to the last node
…sequentially

 Can’t we just “do that” for binary trees.?.
 NO! There is no such natural linear ordering for nodes of a tree.

 Turns out, there are THREE ways/orderings of
traversing a binary tree:
 Preorder, Inorder, and Postorder

Binary Trees page 14© Jonathan Cazalas

Tree Traversals – Depth First

But before we get into the
nitty gritty of those three,
let’s describe..

Binary Trees page 15© Jonathan Cazalas

Tree Traversals – Depth First

 A depth-first search (DFS)
explores a path all the way to
a leaf before backtracking and
exploring another path

 For example, after searching
A, then B, then D, the search
backtracks and tries another
path from B

 Node are explored in the order
A B D E H L M N I O P C F
G J K Q

 N will be found before J
L M N O P

G

Q

H JI K

FED

B C

A

Binary Trees page 16© Jonathan Cazalas

Tree Traversals – Depth First

 Traversal of Binary Trees:
 There are 3 ways/orderings of traversing a

binary tree (all 3 are depth first search
methods):
 Preorder, Inorder, and Postorder
 These names are chosen according to the step at

which the root node is visited:
 With preorder traversal, the root is visited before its left

and right subtrees.
 With inorder traversal, the root is visited between the

subtrees.
 With postorder traversal, the root is visited after both

subtrees.

Binary Trees page 17© Jonathan Cazalas

Tree Traversals - Preorder

 Preorder Traversal
 the root is visited before its left and right

subtrees
 For the following example, the “visiting” of a node is

represented by printing that node

 Code for Preorder Traversal:
void preorder (struct tree_node *p) {

if (p != NULL) {
printf(“%d ”, p->data);
preorder(p->left_child);
preorder(p->right_child);

}
}

Binary Trees page 18© Jonathan Cazalas

Tree Traversals - Preorder

a

b c

a b c

 Preorder Traversal – Example 1
 the root is visited before its left and right

subtrees

Binary Trees page 19© Jonathan Cazalas

Tree Traversals - Preorder

a

b c

d e f

g h i j

a b d g h e i c f j

 Preorder Traversal – Example 2

Order of Visiting Nodes:

Binary Trees page 20© Jonathan Cazalas

Tree Traversals - Inorder

 Inorder Traversal
 the root is visited between the left and right

subtrees
 For the following example, the “visiting” of a node is

represented by printing that node

 Code for Inorder Traversal:
void inorder (struct tree_node *p) {

if (p != NULL) {
inorder(p->left_child);
printf(“%d ”, p->data);
inorder(p->right_child);

}
}

Binary Trees page 21© Jonathan Cazalas

Tree Traversals - Inorder

a

b c

b a c

 Inorder Traversal – Example 1
 the root is visited between the subtrees

Binary Trees page 22© Jonathan Cazalas

Tree Traversals - Inorder

a

b c

d e f

g h i j

g d h b e i a f j c

 Inorder Traversal – Example 2

Order of Visiting Nodes:

Binary Trees page 23© Jonathan Cazalas

Tree Traversals – Postorder

 Postorder Traversal
 the root is visited after both the left and right

subtrees
 For the following example, the “visiting” of a node is

represented by printing that node

 Code for Postorder Traversal:
void postorder (struct tree_node *p) {

if (p != NULL) {
postorder(p->left_child);
postorder(p->right_child);
printf(“%d ”, p->data);

}
}

Binary Trees page 24© Jonathan Cazalas

Tree Traversals – Postorder

a

b c

b c a

 Postorder Traversal – Example 1
 the root is visited after both subtrees

Binary Trees page 25© Jonathan Cazalas

Tree Traversals – Postorder

a

b c

d e f

g h i j

g h d i e b j f c a

 Postorder Traversal – Example 2

Order of Visiting Nodes:

Binary Trees page 26© Jonathan Cazalas

Tree Traversals

 Final Traversal Example

Binary Trees page 27© Jonathan Cazalas

Daily UCF Bike Fail

Unfortunately, this
was here at UCF
near the Student
Union.

Picture courtesy
of Joe Gravelle.

Binary Trees page 28© Jonathan Cazalas

Breadth-First Traversal

 A breadth-first search (BFS)
explores nodes nearest the
root before exploring nodes
further away

 For example, after searching
A, then B, then C, the search
proceeds with D, E, F, G

 Node are explored in the
order A B C D E F G H I J K L M
N O P Q

 J will be found before N
L M N O P

G

Q

H JI K

FED

B C

A

Binary Trees page 29© Jonathan Cazalas

Breadth-First Traversal

H

D

B

A C E G I K M O

N

L

JF

OMKIGECANJFBLDH

Binary Trees page 30© Jonathan Cazalas

Breadth-First Traversal

 Coding the Breadth-First Traversal
 Let’s say you want to Traverse and Print all nodes?

 Think about it, how would you make this happen?
 SOLUTION:
1) Enqueue the root node.
2) while (more nodes still in queue) {

Dequeue node at front (of queue)
Print this node (that we just dequeued)
Enqueue its children (if applicable): left then right
…continue till no more nodes in queue

}

Binary Trees page 31© Jonathan Cazalas

Binary Search Tree

 Binary Search Trees
 We’ve seen how to traverse binary trees
 But it is not quite clear how this data structure

helps us
 What is the purpose of binary trees?

 What if we added a restriction…
 Consider the following

binary tree:

 What pattern can you see?

Binary Trees page 32© Jonathan Cazalas

Binary Search Tree

 Binary Search Trees
 What pattern can you see?

 For each node N, all the values stored in the left subtree
of N are LESS than the value stored in N.

 Also, all the values stored in the right subtree of N are
GREATER than the value stored in N.

 Why might this property be a desireable one?
 Searching for a node is super fast!

 Normally, if we search through n nodes, it takes O(n) time
 But notice what is going on here:

 This ordering property of the tree tells us where to search
 We choose to look to the left OR look to the right of a node
 We are HALVING the search space …O(log n) time

Binary Trees page 33© Jonathan Cazalas

Binary Search Tree

 Binary Search Trees
 Details:

 ALL of the data values in the left subtree of each node are
smaller than the data value in the node itself (root of said
subtree)
 Stated another way, the value of the node itself is larger than

the value of every node in its left subtree.
 ALL of the data values in the right subtree of each node are

larger than the data value in the node itself (root of the
subtree)
 Stated another way, the value of the node itself is smaller than

the value of every node in its right subtree.
 Both the left and right subtrees, of any given node, are

themselves binary search trees.

Binary Trees page 34© Jonathan Cazalas

44

24

20

8 19

2815

30 42

36

40

65

56

62

6458

88

A Binary Search Tree

Binary Search Tree

Binary Trees page 35© Jonathan Cazalas

Binary Search Tree

 Binary Search Trees
 Details:

 A binary search tree, commonly referred to as a BST, is
extremely useful for efficient searching

 Basically, a BST amounts to embedding the binary search
into the data structure itself.
 Notice how the root of every subtree in the BST on the previous

page is the root of a BST.
 This ordering of nodes in the tree means that insertions

into a BST are not placed arbitrarily
 Rather, there is a specific way to insert
 …and that is for next time

Binary Trees page 36© Jonathan Cazalas

Binary Trees

WASN’T
THAT

HISTORIC!

Binary Trees page 37© Jonathan Cazalas

Daily Demotivator

Computer Science Department
University of Central Florida

Binary Trees

COP 3502 – Computer Science I

Binary Trees page 39© Jonathan Cazalas

Binary Tree Traversals – Practice Problems
3

54 71 11 56

15 36

7

26 14

33

22

19

87

8

13

9

75

28

10

63 69

59 68

44

Practice Tree #1

Solutions on page 33

Binary Trees page 40© Jonathan Cazalas

Binary Tree Traversals – Practice Problems
3

54711156

1536

7

2614

33

22

19

87

8

13

9

75

28

10

6369

5968

44

Practice Tree #2

Solutions on Page 34

Binary Trees page 41© Jonathan Cazalas

 Preorder Traversal:
3, 13, 22, 19, 26, 54, 71, 33, 14, 11, 87, 8, 56, 9, 75, 28, 15, 10, 63, 36, 7, 69,
59, 68, 44

 Inorder Traversal:
54, 26, 71, 19, 22, 11, 14, 33, 8, 87, 56, 13, 9, 75, 3, 63, 10, 15, 28, 59, 69, 68,
7, 36, 44

 Postorder Traversal:
54, 71, 26, 19, 11, 14, 8, 56, 87, 33, 22, 75, 9, 13, 63, 10, 15, 59, 68, 69, 7, 44,
36, 28, 3

Practice Problem Solutions – Tree #1

Binary Trees page 42© Jonathan Cazalas

 Preorder Traversal:
3, 28, 36, 44, 7, 69, 68, 59, 15, 10, 63, 13, 9, 75, 22, 33, 87, 56, 8, 14, 11, 19,
26, 71, 54

 Inorder Traversal:
44, 36, 7, 68, 69, 59, 28, 15, 10, 63, 3, 75, 9, 13, 56, 87, 8, 33, 14, 11, 22, 19,
71, 26, 54

 Postorder Traversal:
44, 68, 59, 69, 7, 36, 63, 10, 15, 28, 75, 9, 56, 8, 87, 11, 14, 33, 71, 54, 26, 19,
22, 13, 3

Practice Problem Solutions – Tree #2

	Binary Trees
	Announcements
	Outline
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Traversals – Depth First
	Tree Traversals – Depth First
	Tree Traversals – Depth First
	Tree Traversals – Depth First
	Tree Traversals - Preorder
	Tree Traversals - Preorder
	Tree Traversals - Preorder
	Tree Traversals - Inorder
	Tree Traversals - Inorder
	Tree Traversals - Inorder
	Tree Traversals – Postorder
	Tree Traversals – Postorder
	Tree Traversals – Postorder
	Tree Traversals
	Daily UCF Bike Fail
	Breadth-First Traversal
	Breadth-First Traversal
	Breadth-First Traversal
	Binary Search Tree
	Binary Search Tree
	Binary Search Tree
	Binary Search Tree
	Binary Search Tree
	Binary Trees
	Daily Demotivator
	Binary Trees
	
	
	
	

