Binary Trees

Computer Science Department University of Central Florida

COP 3502 – Computer Science I

Announcements

Quiz 4 is today

- What does it cover?
- Check Webcourses.

Program 4 was assigned last week

- Due in 1 week
 - July 6th

Outline

- Tree Stuff
 - Trees
 - Binary Trees
 - Implementation of a Binary Tree
- Tree Traversals Depth First
 - Preorder
 - Inorder
 - Postorder
- Breadth First Tree Traversal
 - Binary Search Trees

G

Tree Stuff

Trees:

- Another Abstract Data Type
- Data structure made of nodes and pointers
 - Much like a linked list
 - The difference between the two is how they are organized.
 - A linked list represents a linear structure
 - A predecessor/successor relationship between the nodes of the list
 - A <u>tree</u> represents a <u>hierarchical relationship</u> between the nodes (ancestral relationship)
 - A node in a tree can have several successors, which we refer to as <u>children</u>
 - A nodes predecessor would be its <u>parent</u>

© Jonathan Cazalas	Binary Trees	page 4

Trees:

- General Tree Information:
 - Top node in a tree is called the root
 - the root node has no parent above it...cuz it's the root!
 - Every node in the tree can have "children" nodes
 - Each child node can, in turn, be a parent to its children and so on
 - Nodes having no children are called leaves
 - Any node that is not a root or a leaf is an interior node
 - The height of a tree is defined to be the length of the longest path from the root to a leaf in that tree.
 - A tree with only one node (the root) has a height of zero.

page 5

Trees:

Here's a purty picture of a tree:

- 2 is the root
- 2, 5, 11, and 4 are leaves
- 7, 5, 6, and 9 are interior nodes

2

6

5

5

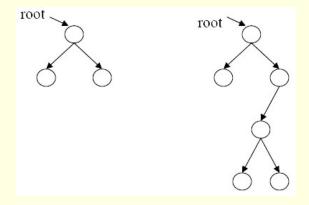
G

Tree Stuff

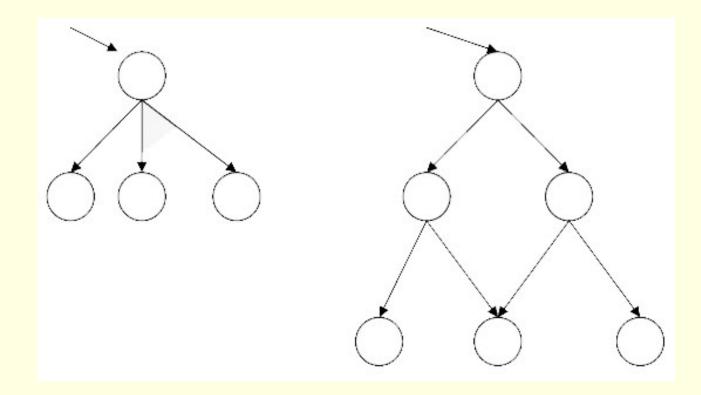
Binary Trees:

- A tree in which each node can have a <u>maximum of</u> <u>two children</u>
 - Each node can have no child, one child, or two children
 - And a child can only have one parent
 - Pointers help us to identify if it is a right child or a left one

Examples of two Binary Trees:



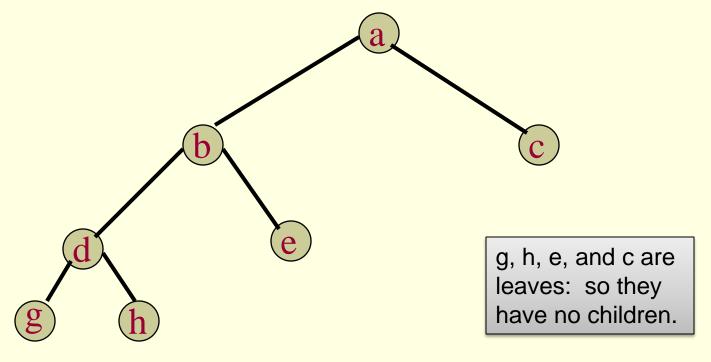
Examples of trees that are NOT Binary Trees:



© Jonathan	Cazalas
------------	---------

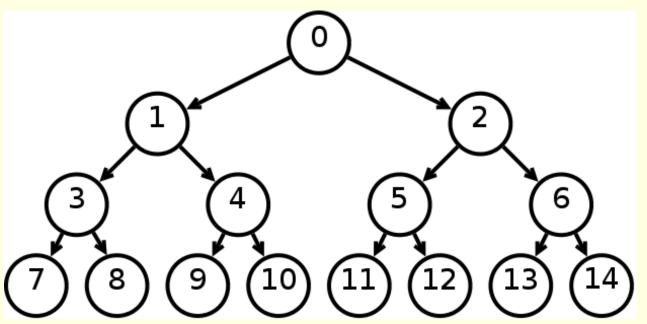
More Binary Tree Goodies:

- A <u>full</u> binary tree:
 - Every node, other than the leaves, has two children



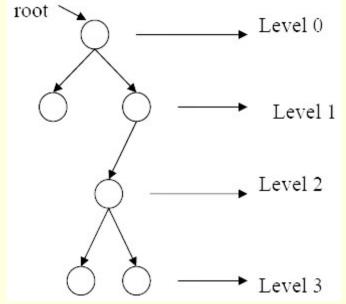
More Binary Tree Goodies:

- A <u>complete</u> binary tree:
 - Every level, except possibly the last, is completely filled, and all nodes are as far left as possible.



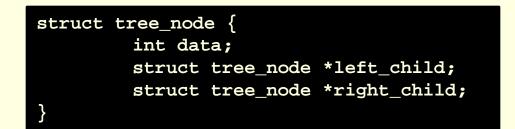
More Binary Tree Goodies:

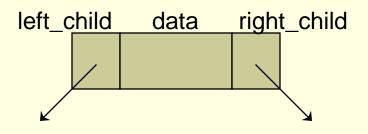
- The root of the tree is at level 0
- The level of any other node in the tree is one more than the level of its parent
- Total # of nodes (n) in a complete binary tree:
 - $n = 2^{h+1} 1$ (maximum)
- Height (h) of the tree:
 - h = log((n + 1)/2)
 - If we have 15 nodes
 - h = log(16/2) = log(8) = 3



Implementation of a Binary Tree:

- A binary tree has a natural implementation using linked storage
- Each node of a binary tree has both <u>left</u> and <u>right subtrees</u> that can be <u>reached with pointers</u>:





© Jonathan (Cazalas
--------------	---------

G

Tree Traversals – Depth First

Traversal of Binary Trees:

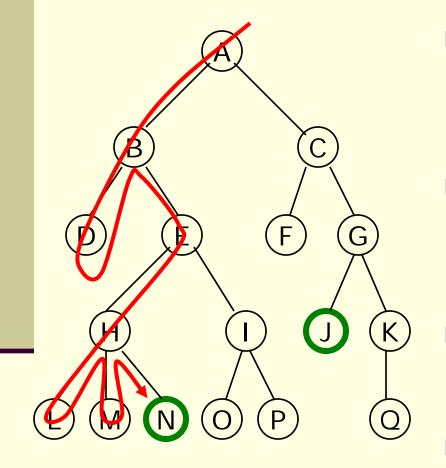
- We need a way of zipping through a tree for searching, inserting, etc.
 - But how can we do this?
 - If you remember...
 - Linked lists are traversed from the head to the last node
 ...sequentially
 - Can't we just "do that" for binary trees.?.
 - NO! There is no such natural linear ordering for nodes of a tree.
- Turns out, there are THREE ways/orderings of traversing a binary tree:
 - Preorder, Inorder, and Postorder

© Jonathan Cazalas	Binary Trees	page 13

Tree Traversals – Depth First

But before we get into the nitty gritty of those three, let's describe..

Tree Traversals – Depth First



- A depth-first search (DFS) explores a path all the way to a leaf before backtracking and exploring another path
- For example, after searching A, then B, then D, the search backtracks and tries another path from B
- Node are explored in the order A B D E H L M N I O P C F G J K Q
- N will be found before J

S

Tree Traversals – Depth First

Traversal of Binary Trees:

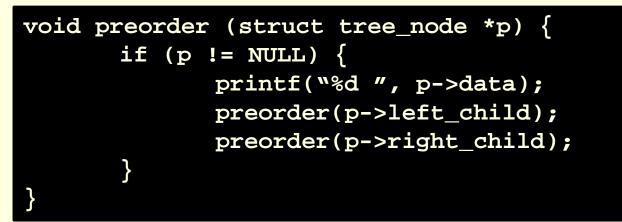
- There are 3 ways/orderings of traversing a binary tree (all 3 are depth first search methods):
 - Preorder, Inorder, and Postorder
 - These <u>names</u> are chosen <u>according to the step at</u> which the root node is visited:
 - With <u>preorder</u> traversal, the <u>root is visited before</u> its left and right subtrees.
 - With <u>inorder</u> traversal, the <u>root is visited between</u> the subtrees.
 - With <u>postorder</u> traversal, the <u>root is visited after</u> both subtrees.

© Jonathan Cazalas	Binary Trees	page 16

Tree Traversals - Preorder

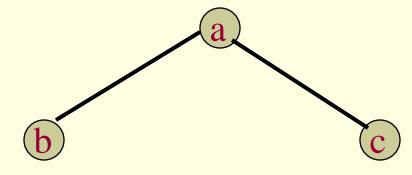
Preorder Traversal

- the root is visited before its left and right subtrees
 - For the following example, the "<u>visiting</u>" of a node is <u>represented by printing</u> that node
- Code for Preorder Traversal:



Tree Traversals - Preorder

- Preorder Traversal Example 1
 - the root is visited before its left and right subtrees

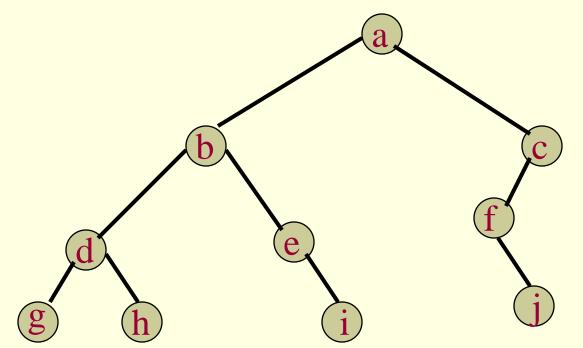


a b c

© Jonathan Cazalas

Tree Traversals - Preorder

Preorder Traversal – Example 2

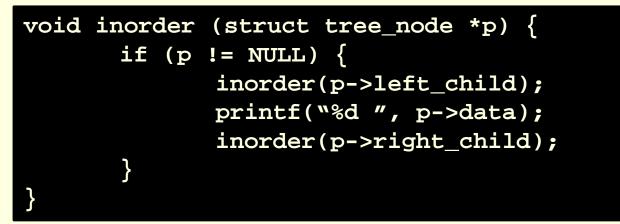


Order of Visiting Nodes: a b d g h e i c f j

Tree Traversals - Inorder

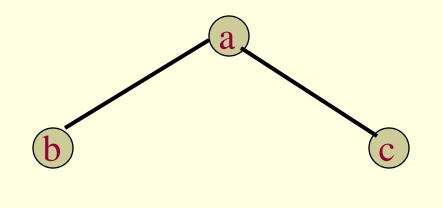
Inorder Traversal

- the root is visited between the left and right subtrees
 - For the following example, the "<u>visiting</u>" of a node is <u>represented by printing</u> that node
- Code for Inorder Traversal:



Tree Traversals - Inorder

- Inorder Traversal Example 1
 - the root is visited between the subtrees

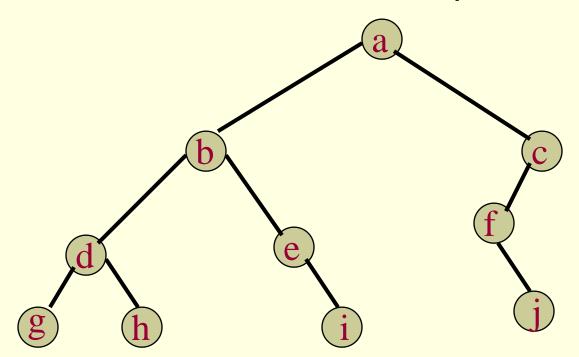


b a c

© Jonathan Caza	las
-----------------	-----

Tree Traversals - Inorder

Inorder Traversal – Example 2



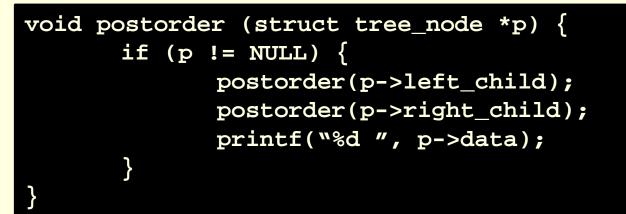
Order of Visiting Nodes: g d h b e i a f j c

© Jonathan Cazalas

Tree Traversals – Postorder

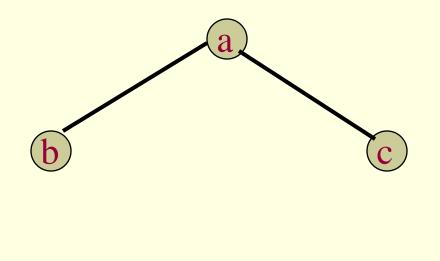
Postorder Traversal

- the root is visited after both the left and right subtrees
 - For the following example, the "<u>visiting</u>" of a node is <u>represented by printing</u> that node
- Code for Postorder Traversal:



Tree Traversals – Postorder

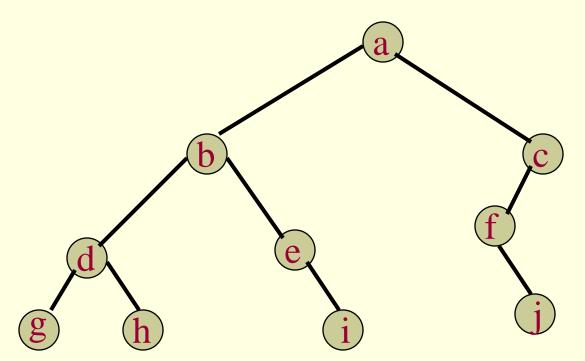
- Postorder Traversal Example 1
 - the root is visited after both subtrees



b c a

Tree Traversals – Postorder

Postorder Traversal – Example 2



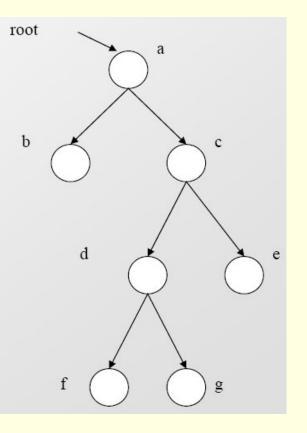
Order of Visiting Nodes: ghdiebjfca

© Jonathan	Cazalas
------------	---------

Tree Traversals

Final Traversal Example

- <u>Preorder</u>: abcdfge
- Inorder: b a f d g c e
- <u>Postorder</u>: b f g d e c a



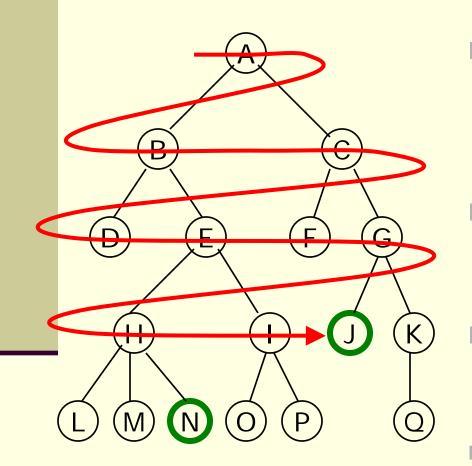
Daily UCF Bike Fail

Unfortunately, this was here at UCF near the Student Union.

Picture courtesy of Joe Gravelle.

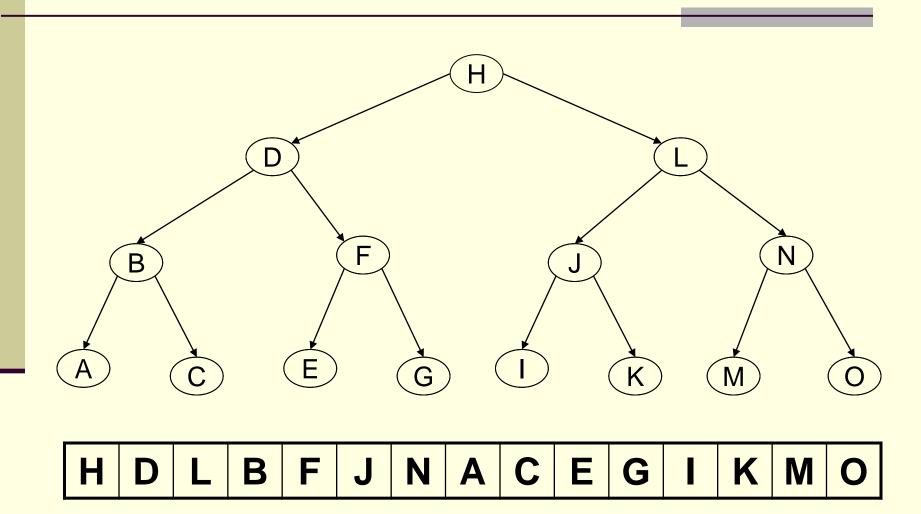
G

Breadth-First Traversal



- A <u>breadth-first</u> search (BFS) <u>explores nodes nearest the</u> <u>root</u> before exploring nodes further away
- For example, after searching A, then B, then C, the search proceeds with D, E, F, G
 - Node are explored in the order A B C D E F G H I J K L M N O P Q
 - J will be found before N

Breadth-First Traversal



© Jonathan Cazalas

Breadth-First Traversal

Coding the Breadth-First Traversal

- Let's say you want to Traverse and Print all nodes?
 - Think about it, how would you make this happen?
 - SOLUTION:
 - 1) <u>Enqueue</u> the root node.
 - 2) while (more nodes still in queue) {
 - Dequeue node at front (of queue)
 - Print this node (that we just dequeued)
 - Enqueue its children (if applicable): left then right
 - ...continue till no more nodes in queue

G

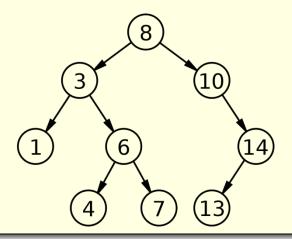
Binary Search Tree

Binary Search Trees

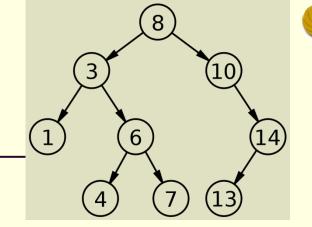
- We've seen how to traverse binary trees
- But it is not quite clear how this data structure helps us

What is the purpose of binary trees?

- What if we added a restriction...
- Consider the following binary tree:
- What pattern can you see?



Binary Search Tree



Binary Search Trees

- What pattern can you see?
 - For each node N, all the values stored in the left subtree of N are LESS than the value stored in N.
 - Also, all the values stored in the right subtree of N are GREATER than the value stored in N.
 - Why might this property be a desireable one?
 - Searching for a node is super fast!
 - Normally, if we search through n nodes, it takes O(n) time
 - But notice what is going on here:
 - This ordering property of the tree tells us where to search
 - We choose to look to the left OR look to the right of a node
 - We are <u>HALVING</u> the search space ...O(log n) time

Jonathan Cazalas	Binary Trees	page 32

G

Binary Search Tree

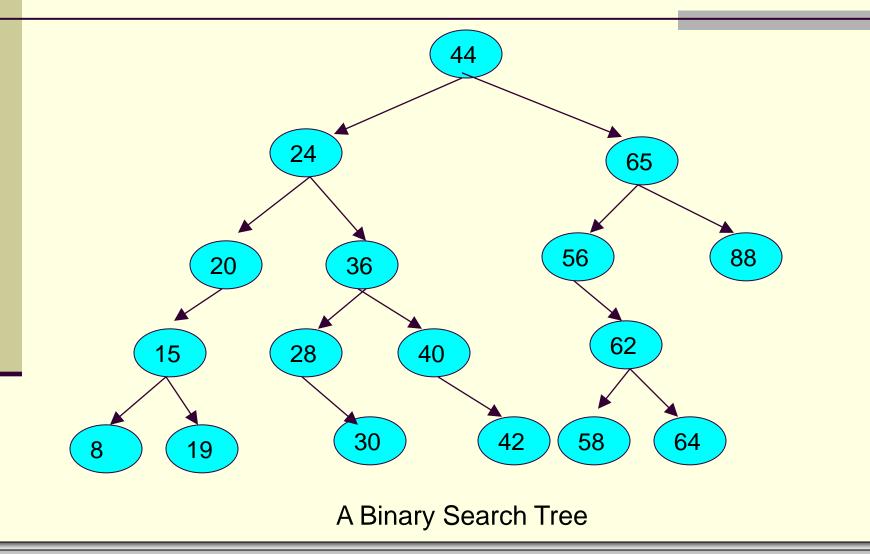
Binary Search Trees

Details:

- ALL of the <u>data values</u> in the <u>left subtree</u> of each node are <u>smaller</u> than the <u>data value in the node itself</u> (root of said subtree)
 - Stated another way, the value of the node itself is larger than the value of every node in its left subtree.
- ALL of the <u>data values</u> in the <u>right subtree</u> of each node are <u>larger</u> than the <u>data value in the node itself</u> (root of the subtree)
 - Stated another way, the value of the node itself is smaller than the value of every node in its right subtree.
- Both the left and right subtrees, of any given node, are themselves binary search trees.

Jonathan Cazalas	Binary Trees	page 33

Binary Search Tree



)J	lona	than	Caza	las

Binary Trees

G

Binary Search Tree

Binary Search Trees

Details:

A binary search tree, commonly referred to as a <u>BST</u>, is <u>extremely useful for efficient searching</u>

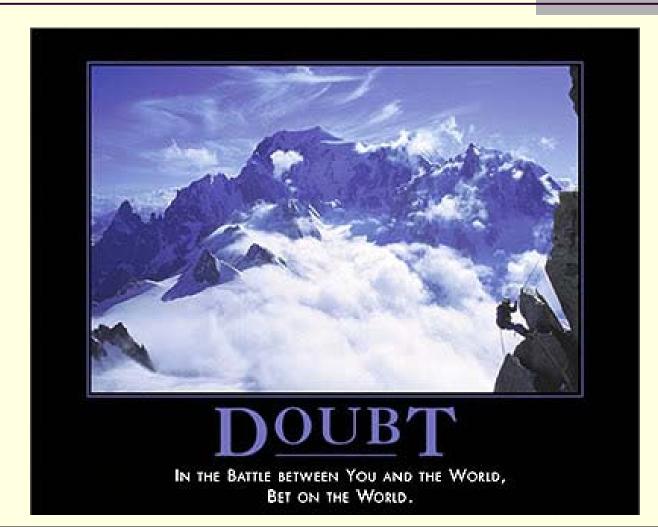
 Basically, a BST amounts to <u>embedding the binary search</u> into the data structure itself.

- Notice how the root of every subtree in the BST on the previous page is the root of a BST.
- This ordering of nodes in the tree means that <u>insertions</u> into a BST are <u>not placed arbitrarily</u>
- Rather, there is a specific way to insert
- ...and that is for next time

WASN'T THAT **HISTORIC!**

Binary Trees

Daily Demotivator



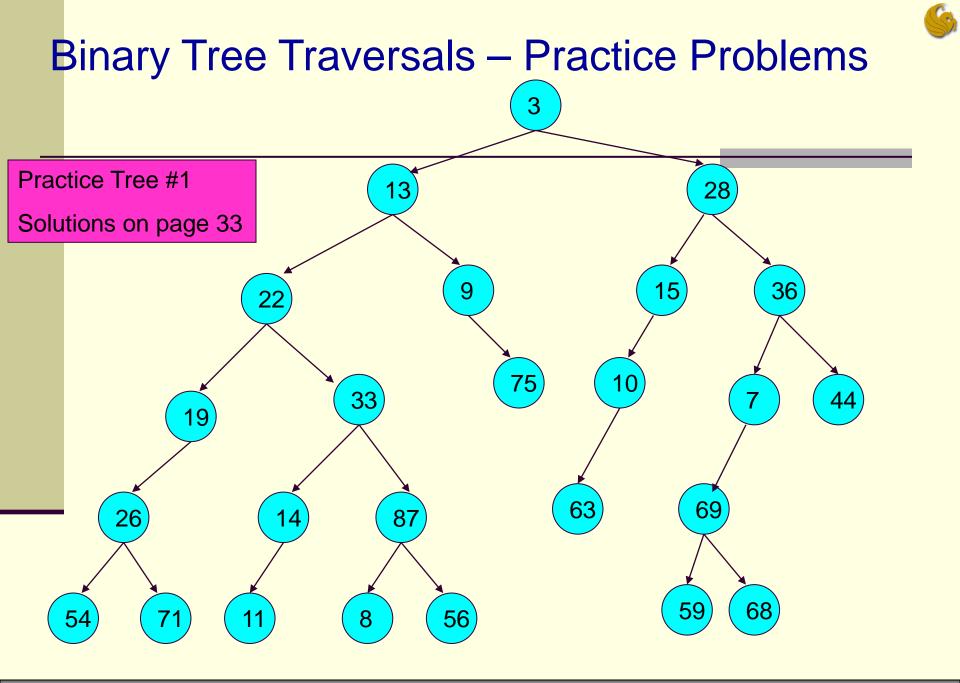
© Jonathan Cazalas

Binary Trees

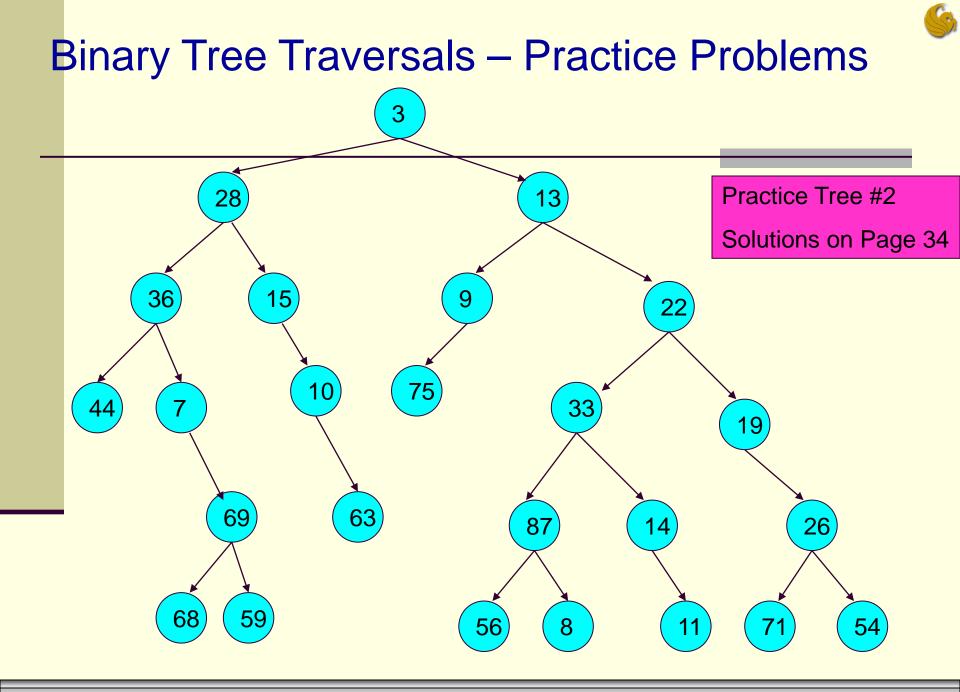
Binary Trees

Computer Science Department University of Central Florida

COP 3502 – Computer Science I



O .	lonathan	Cazalas
ຶ່	unainan	Cazalas



	©J	lonathar	Cazalas
--	----	----------	---------

S

Practice Problem Solutions – Tree #1

Preorder Traversal:

3, 13, 22, 19, 26, 54, 71, 33, 14, 11, 87, 8, 56, 9, 75, 28, 15, 10, 63, 36, 7, 69, 59, 68, 44

Inorder Traversal:

54, 26, 71, 19, 22, 11, 14, 33, 8, 87, 56, 13, 9, 75, 3, 63, 10, 15, 28, 59, 69, 68, 7, 36, 44

Postorder Traversal:

54, 71, 26, 19, 11, 14, 8, 56, 87, 33, 22, 75, 9, 13, 63, 10, 15, 59, 68, 69, 7, 44, 36, 28, 3

© Jonathan	Cazalas
------------	---------

S

Practice Problem Solutions – Tree #2

Preorder Traversal:

3, 28, 36, 44, 7, 69, 68, 59, 15, 10, 63, 13, 9, 75, 22, 33, 87, 56, 8, 14, 11, 19, 26, 71, 54

Inorder Traversal:

44, 36, 7, 68, 69, 59, 28, 15, 10, 63, 3, 75, 9, 13, 56, 87, 8, 33, 14, 11, 22, 19, 71, 26, 54

Postorder Traversal:

44, 68, 59, 69, 7, 36, 63, 10, 15, 28, 75, 9, 56, 8, 87, 11, 14, 33, 71, 54, 26, 19, 22, 13, 3

© Jonathan	Cazalas
------------	---------