
Computer Science Department
University of Central Florida

Binary Trees

COP 3502 – Computer Science I

Binary Trees page 2© Jonathan Cazalas

Announcements

 Quiz 4 is today
 What does it cover?
 Check Webcourses.

 Program 4 was assigned last week
 Due in 1 week

 July 6th

Binary Trees page 3© Jonathan Cazalas

Outline

 Tree Stuff
 Trees
 Binary Trees
 Implementation of a Binary Tree

 Tree Traversals – Depth First
 Preorder
 Inorder
 Postorder

 Breadth First Tree Traversal
 Binary Search Trees

Binary Trees page 4© Jonathan Cazalas

Tree Stuff

 Trees:
 Another Abstract Data Type
 Data structure made of nodes and pointers

 Much like a linked list
 The difference between the two is how they are organized.

 A linked list represents a linear structure
 A predecessor/successor relationship between the nodes of

the list
 A tree represents a hierarchical relationship between

the nodes (ancestral relationship)
 A node in a tree can have several successors, which we refer

to as children
 A nodes predecessor would be its parent

Binary Trees page 5© Jonathan Cazalas

Tree Stuff

 Trees:
 General Tree Information:

 Top node in a tree is called the root
 the root node has no parent above it…cuz it’s the root!

 Every node in the tree can have “children” nodes
 Each child node can, in turn, be a parent to its children and

so on
 Nodes having no children are called leaves
 Any node that is not a root or a leaf is an interior

node
 The height of a tree is defined to be the length of the

longest path from the root to a leaf in that tree.
 A tree with only one node (the root) has a height of zero.

Binary Trees page 6© Jonathan Cazalas

Tree Stuff

 Trees:
 Here’s a purty picture of a tree:

 2 is the root
 2, 5, 11, and 4 are leaves
 7, 5, 6, and 9 are interior

nodes

Binary Trees page 7© Jonathan Cazalas

Tree Stuff

 Binary Trees:
 A tree in which each node can have a maximum of

two children
 Each node can have no child, one child, or two children
 And a child can only have one parent
 Pointers help us to identify if it is a right child or a left one

Examples of two
Binary Trees:

Binary Trees page 8© Jonathan Cazalas

Tree Stuff

 Examples of trees that are NOT Binary Trees:

Binary Trees page 9© Jonathan Cazalas

Tree Stuff

 More Binary Tree Goodies:
 A full binary tree:

 Every node, other than the leaves, has two children

a

b c

d e

g h

g, h, e, and c are
leaves: so they
have no children.

Binary Trees page 10© Jonathan Cazalas

Tree Stuff

 More Binary Tree Goodies:
 A complete binary tree:

 Every level, except possibly the last, is completely
filled, and all nodes are as far left as possible.

Binary Trees page 11© Jonathan Cazalas

Tree Stuff

 More Binary Tree Goodies:
 The root of the tree is at level 0
 The level of any other node in the tree is one

more than the level of its parent
 Total # of nodes (n) in a

complete binary tree:
 n = 2h+1 – 1 (maximum)

 Height (h) of the tree:
 h = log((n + 1)/2)
 If we have 15 nodes
 h = log(16/2) = log(8) = 3

Binary Trees page 12© Jonathan Cazalas

Tree Stuff

 Implementation of a Binary Tree:
 A binary tree has a natural implementation using

linked storage
 Each node of a binary tree has both left and

right subtrees that can be reached with pointers:

left_child data right_childstruct tree_node {
int data;
struct tree_node *left_child;
struct tree_node *right_child;

}

Binary Trees page 13© Jonathan Cazalas

Tree Traversals – Depth First

 Traversal of Binary Trees:
 We need a way of zipping through a tree for

searching, inserting, etc.
 But how can we do this?
 If you remember…

 Linked lists are traversed from the head to the last node
…sequentially

 Can’t we just “do that” for binary trees.?.
 NO! There is no such natural linear ordering for nodes of a tree.

 Turns out, there are THREE ways/orderings of
traversing a binary tree:
 Preorder, Inorder, and Postorder

Binary Trees page 14© Jonathan Cazalas

Tree Traversals – Depth First

But before we get into the
nitty gritty of those three,
let’s describe..

Binary Trees page 15© Jonathan Cazalas

Tree Traversals – Depth First

 A depth-first search (DFS)
explores a path all the way to
a leaf before backtracking and
exploring another path

 For example, after searching
A, then B, then D, the search
backtracks and tries another
path from B

 Node are explored in the order
A B D E H L M N I O P C F
G J K Q

 N will be found before J
L M N O P

G

Q

H JI K

FED

B C

A

Binary Trees page 16© Jonathan Cazalas

Tree Traversals – Depth First

 Traversal of Binary Trees:
 There are 3 ways/orderings of traversing a

binary tree (all 3 are depth first search
methods):
 Preorder, Inorder, and Postorder
 These names are chosen according to the step at

which the root node is visited:
 With preorder traversal, the root is visited before its left

and right subtrees.
 With inorder traversal, the root is visited between the

subtrees.
 With postorder traversal, the root is visited after both

subtrees.

Binary Trees page 17© Jonathan Cazalas

Tree Traversals - Preorder

 Preorder Traversal
 the root is visited before its left and right

subtrees
 For the following example, the “visiting” of a node is

represented by printing that node

 Code for Preorder Traversal:
void preorder (struct tree_node *p) {

if (p != NULL) {
printf(“%d ”, p->data);
preorder(p->left_child);
preorder(p->right_child);

}
}

Binary Trees page 18© Jonathan Cazalas

Tree Traversals - Preorder

a

b c

a b c

 Preorder Traversal – Example 1
 the root is visited before its left and right

subtrees

Binary Trees page 19© Jonathan Cazalas

Tree Traversals - Preorder

a

b c

d e f

g h i j

a b d g h e i c f j

 Preorder Traversal – Example 2

Order of Visiting Nodes:

Binary Trees page 20© Jonathan Cazalas

Tree Traversals - Inorder

 Inorder Traversal
 the root is visited between the left and right

subtrees
 For the following example, the “visiting” of a node is

represented by printing that node

 Code for Inorder Traversal:
void inorder (struct tree_node *p) {

if (p != NULL) {
inorder(p->left_child);
printf(“%d ”, p->data);
inorder(p->right_child);

}
}

Binary Trees page 21© Jonathan Cazalas

Tree Traversals - Inorder

a

b c

b a c

 Inorder Traversal – Example 1
 the root is visited between the subtrees

Binary Trees page 22© Jonathan Cazalas

Tree Traversals - Inorder

a

b c

d e f

g h i j

g d h b e i a f j c

 Inorder Traversal – Example 2

Order of Visiting Nodes:

Binary Trees page 23© Jonathan Cazalas

Tree Traversals – Postorder

 Postorder Traversal
 the root is visited after both the left and right

subtrees
 For the following example, the “visiting” of a node is

represented by printing that node

 Code for Postorder Traversal:
void postorder (struct tree_node *p) {

if (p != NULL) {
postorder(p->left_child);
postorder(p->right_child);
printf(“%d ”, p->data);

}
}

Binary Trees page 24© Jonathan Cazalas

Tree Traversals – Postorder

a

b c

b c a

 Postorder Traversal – Example 1
 the root is visited after both subtrees

Binary Trees page 25© Jonathan Cazalas

Tree Traversals – Postorder

a

b c

d e f

g h i j

g h d i e b j f c a

 Postorder Traversal – Example 2

Order of Visiting Nodes:

Binary Trees page 26© Jonathan Cazalas

Tree Traversals

 Final Traversal Example

Binary Trees page 27© Jonathan Cazalas

Daily UCF Bike Fail

Unfortunately, this
was here at UCF
near the Student
Union.

Picture courtesy
of Joe Gravelle.

Binary Trees page 28© Jonathan Cazalas

Breadth-First Traversal

 A breadth-first search (BFS)
explores nodes nearest the
root before exploring nodes
further away

 For example, after searching
A, then B, then C, the search
proceeds with D, E, F, G

 Node are explored in the
order A B C D E F G H I J K L M
N O P Q

 J will be found before N
L M N O P

G

Q

H JI K

FED

B C

A

Binary Trees page 29© Jonathan Cazalas

Breadth-First Traversal

H

D

B

A C E G I K M O

N

L

JF

OMKIGECANJFBLDH

Binary Trees page 30© Jonathan Cazalas

Breadth-First Traversal

 Coding the Breadth-First Traversal
 Let’s say you want to Traverse and Print all nodes?

 Think about it, how would you make this happen?
 SOLUTION:
1) Enqueue the root node.
2) while (more nodes still in queue) {

Dequeue node at front (of queue)
Print this node (that we just dequeued)
Enqueue its children (if applicable): left then right
…continue till no more nodes in queue

}

Binary Trees page 31© Jonathan Cazalas

Binary Search Tree

 Binary Search Trees
 We’ve seen how to traverse binary trees
 But it is not quite clear how this data structure

helps us
 What is the purpose of binary trees?

 What if we added a restriction…
 Consider the following

binary tree:

 What pattern can you see?

Binary Trees page 32© Jonathan Cazalas

Binary Search Tree

 Binary Search Trees
 What pattern can you see?

 For each node N, all the values stored in the left subtree
of N are LESS than the value stored in N.

 Also, all the values stored in the right subtree of N are
GREATER than the value stored in N.

 Why might this property be a desireable one?
 Searching for a node is super fast!

 Normally, if we search through n nodes, it takes O(n) time
 But notice what is going on here:

 This ordering property of the tree tells us where to search
 We choose to look to the left OR look to the right of a node
 We are HALVING the search space …O(log n) time

Binary Trees page 33© Jonathan Cazalas

Binary Search Tree

 Binary Search Trees
 Details:

 ALL of the data values in the left subtree of each node are
smaller than the data value in the node itself (root of said
subtree)
 Stated another way, the value of the node itself is larger than

the value of every node in its left subtree.
 ALL of the data values in the right subtree of each node are

larger than the data value in the node itself (root of the
subtree)
 Stated another way, the value of the node itself is smaller than

the value of every node in its right subtree.
 Both the left and right subtrees, of any given node, are

themselves binary search trees.

Binary Trees page 34© Jonathan Cazalas

44

24

20

8 19

2815

30 42

36

40

65

56

62

6458

88

A Binary Search Tree

Binary Search Tree

Binary Trees page 35© Jonathan Cazalas

Binary Search Tree

 Binary Search Trees
 Details:

 A binary search tree, commonly referred to as a BST, is
extremely useful for efficient searching

 Basically, a BST amounts to embedding the binary search
into the data structure itself.
 Notice how the root of every subtree in the BST on the previous

page is the root of a BST.
 This ordering of nodes in the tree means that insertions

into a BST are not placed arbitrarily
 Rather, there is a specific way to insert
 …and that is for next time

Binary Trees page 36© Jonathan Cazalas

Binary Trees

WASN’T
THAT

HISTORIC!

Binary Trees page 37© Jonathan Cazalas

Daily Demotivator

Computer Science Department
University of Central Florida

Binary Trees

COP 3502 – Computer Science I

Binary Trees page 39© Jonathan Cazalas

Binary Tree Traversals – Practice Problems
3

54 71 11 56

15 36

7

26 14

33

22

19

87

8

13

9

75

28

10

63 69

59 68

44

Practice Tree #1

Solutions on page 33

Binary Trees page 40© Jonathan Cazalas

Binary Tree Traversals – Practice Problems
3

54711156

1536

7

2614

33

22

19

87

8

13

9

75

28

10

6369

5968

44

Practice Tree #2

Solutions on Page 34

Binary Trees page 41© Jonathan Cazalas

 Preorder Traversal:
3, 13, 22, 19, 26, 54, 71, 33, 14, 11, 87, 8, 56, 9, 75, 28, 15, 10, 63, 36, 7, 69,
59, 68, 44

 Inorder Traversal:
54, 26, 71, 19, 22, 11, 14, 33, 8, 87, 56, 13, 9, 75, 3, 63, 10, 15, 28, 59, 69, 68,
7, 36, 44

 Postorder Traversal:
54, 71, 26, 19, 11, 14, 8, 56, 87, 33, 22, 75, 9, 13, 63, 10, 15, 59, 68, 69, 7, 44,
36, 28, 3

Practice Problem Solutions – Tree #1

Binary Trees page 42© Jonathan Cazalas

 Preorder Traversal:
3, 28, 36, 44, 7, 69, 68, 59, 15, 10, 63, 13, 9, 75, 22, 33, 87, 56, 8, 14, 11, 19,
26, 71, 54

 Inorder Traversal:
44, 36, 7, 68, 69, 59, 28, 15, 10, 63, 3, 75, 9, 13, 56, 87, 8, 33, 14, 11, 22, 19,
71, 26, 54

 Postorder Traversal:
44, 68, 59, 69, 7, 36, 63, 10, 15, 28, 75, 9, 56, 8, 87, 11, 14, 33, 71, 54, 26, 19,
22, 13, 3

Practice Problem Solutions – Tree #2

	Binary Trees
	Announcements
	Outline
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Traversals – Depth First
	Tree Traversals – Depth First
	Tree Traversals – Depth First
	Tree Traversals – Depth First
	Tree Traversals - Preorder
	Tree Traversals - Preorder
	Tree Traversals - Preorder
	Tree Traversals - Inorder
	Tree Traversals - Inorder
	Tree Traversals - Inorder
	Tree Traversals – Postorder
	Tree Traversals – Postorder
	Tree Traversals – Postorder
	Tree Traversals
	Daily UCF Bike Fail
	Breadth-First Traversal
	Breadth-First Traversal
	Breadth-First Traversal
	Binary Search Tree
	Binary Search Tree
	Binary Search Tree
	Binary Search Tree
	Binary Search Tree
	Binary Trees
	Daily Demotivator
	Binary Trees
	
	
	
	

