
Computer Science Department
University of Central Florida

And More
Algorithm Analysis

COP 3502 – Computer Science I

And More Algorithm Analysis page 2© Jonathan Cazalas

Announcements

 Quiz 3 is today
 Purpose: make you study the current material

TODAY
 Hopefully (ideally) giving you less material to study

on the weekend
 “Why am I studying on the weekend?”
 Oooooh, yeah, Exam 1

 Exam 1 is on Tuesday!

And More Algorithm Analysis page 3© Jonathan Cazalas

And More Algorithm Analysis

 Examples of Analyzing Code:
 Last time we went over examples of analyzing

code
 We did this in a somewhat naïve manner

 Just analyzed the code and tried to “trace” what was going on

 This Lecture:
 We will do this in a more structured fashion
 We mentioned that summations are a tool for you to help

coming up with a running time of iterative algorithms
 Today we will look at some of those same code

fragments, as well as others, and show you how to use
summations to find the Big-O running time

And More Algorithm Analysis page 4© Jonathan Cazalas

More Algorithm Analysis

 Example 1:
 Determine the Big O running time of the following

code fragment:
 We have two for loops
 They are NOT nested

 The first runs from k = 1 up to (and including) n/2
 The second runs from j = 1 up to (and including) n2

for (k = 1; k <= n/2; k++) {
sum = sum + 5;

}
for (j = 1; j <= n*n; j++) {

delta = delta + 1;
}

And More Algorithm Analysis page 5© Jonathan Cazalas

More Algorithm Analysis

 Example 1:
 Determine the Big O running time of the following

code fragment:
 Here’s how we can express the number of operations

in the form of a summation:

for (k = 1; k <= n/2; k++) {
sum = sum + 5;

}
for (j = 1; j <= n*n; j++) {

delta = delta + 1;
}

∑∑
==

+
2

1

2/

1
11

n

j

n

k

The constant value, 1, inside each summation refers
to the one, and only, operation in each for loop.

Now you simply
solve the summation!

And More Algorithm Analysis page 6© Jonathan Cazalas

More Algorithm Analysis

 Example 1:
 Determine the Big O running time of the following

code fragment:
 Here’s how we can express the number of operations

in the form of a summation:

 This is a CLOSED FORM solution of the summation
 So we approximate the running time as O(n2)

∑∑
==

+
2

1

2/

1
11

n

j

n

k

nkk
n

i
*

1
=∑

=

∑∑
==

+
2

1

2/

1
11

n

j

n

k

2

2
nn

+=

You use the formula:

And More Algorithm Analysis page 7© Jonathan Cazalas

More Algorithm Analysis

 Example 2:
 Determine the Big O running time of the following

code fragment:
 Here we again have two for loops
 But this time they are nested
int func2(int n) {

int i, j, x = 0;
for (i = 1; i <= n; i++) {

for (j = 1; j <= n; j++) {
x++;

}
}
return x;

}

And More Algorithm Analysis page 8© Jonathan Cazalas

More Algorithm Analysis

 Example 2:
 Determine the Big O running time of the following

code fragment:
 Here we again have two for loops
 But this time they are nested

 The outer loop runs from i = 1 up to (and including) n
 The inner loop runs from j = 1 up to (and including) n

 The sole (only) operation is a “x++” within the inner
loop

And More Algorithm Analysis page 9© Jonathan Cazalas

More Algorithm Analysis

 Example 2:
 Determine the Big O running time of the following

code fragment:
 We express the number of operations in the form of a

summation and then we solve that summation:

 This is a CLOSED FORM solution of the summation
 So we approximate the running time as O(n2)

∑∑
==

n

j

n

i 11
1 nkk

n

i
*

1
=∑

=

You use the formula:

∑∑
==

n

j

n

i 11
1 ∑

=

=
n

i
n

1

2n= All we did is apply the
above formula twice.

And More Algorithm Analysis page 10© Jonathan Cazalas

More Algorithm Analysis

 Example 3:
 Determine the Big O running time of the following

code fragment:
 Here we again have two for loops
 And they are nested. So is this O(n2)?

int func3(int n) {
sum = 0;
for (i = 0; i < n; i++) {

for (j = 0; j < n * n; j++) {
sum++;

}
}

}

And More Algorithm Analysis page 11© Jonathan Cazalas

More Algorithm Analysis

 Example 3:
 Determine the Big O running time of the following

code fragment:
 Here we again have two for loops
 And they are nested. So is this O(n2)?

 The outer loop runs from i = 0 up to (and not including) n
 The inner loop runs from j = 0 up to (and not including) n2

 The sole (only) operation is a “sum++” within the inner
loop

And More Algorithm Analysis page 12© Jonathan Cazalas

More Algorithm Analysis

 Example 3:
 Determine the Big O running time of the following

code fragment:
 We express the number of operations in the form of a

summation and then we solve that summation:

 This is a CLOSED FORM solution of the summation
 So we approximate the running time as O(n3)

∑∑
−

=

−

=

1

0

1

0

2

1
n

j

n

i

nkk
n

i
*

1
=∑

=

You use the formula:

3n= All we did is apply the
above formula twice.∑∑

−

=

−

=

1

0

1

0

2

1
n

j

n

i
∑
−

=

=
1

0

2
n

i
n ∑

−

=

=
1

0

2 1
n

i
n

And More Algorithm Analysis page 13© Jonathan Cazalas

More Algorithm Analysis

 Example 4:
 Write a summation that describes the number of

multiplication operations in this code fragment:
 Here we again have two for loops
 Pay attention to the limits (bounds) of the for loop

int func3(int n) {
bigNumber = 0;
for (i = 100; i <= 2n; i++) {

for (j = 1; j < n * n; j++) {
bigNumber += i*n + j*n;

}
}

}

And More Algorithm Analysis page 14© Jonathan Cazalas

More Algorithm Analysis

 Example 4:
 Write a summation that describes the number of

multiplication operations in this code fragment:
 Here we again have two for loops
 Pay attention to the limits (bounds) of the for loop

 The outer loop runs from i = 100 up to (and including) 2n
 The inner loop runs from j = 1 up to (and not including) n2

 Now examine the number of multiplications
 Because this problem specifically said to “describe the

number of multiplication operations, we do not care about
ANY of the other operations

 bigNumber += i*n + j*n;
 There are TWO multiplication operations in this statement

And More Algorithm Analysis page 15© Jonathan Cazalas

More Algorithm Analysis

 Example 4:
 Write a summation that describes the number of

multiplication operations in this code fragment:
 We express the number of multiplications in the form of

a summation and then we solve that summation:

 This is a CLOSED FORM solution of the summation
 Shows the number of multiplications

∑∑
−

==

1

1

2

100

2

2
n

j

n

i

)992)(1(21)1(2)1(22 2
2

100

2
2

100

2
1

1

2

100

2

−−=−=−= ∑∑∑∑
==

−

==

nnnn
n

i

n

i

n

j

n

i

And More Algorithm Analysis page 16© Jonathan Cazalas

More Algorithm Analysis

WASN’T
THAT

THE COOLEST!

And More Algorithm Analysis page 17© Jonathan Cazalas

Daily Demotivator

Computer Science Department
University of Central Florida

And More
Algorithm Analysis

COP 3502 – Computer Science I

	And More Algorithm Analysis
	Announcements
	And More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	Daily Demotivator
	And More Algorithm Analysis

