Base Conversions

Computer Science Department University of Central Florida

COP 3502 - Computer Science I

Counting Systems - Basic Info

- Regular Counting System

- Known as Decimal
- also known as base 10
- Do you know why it is called base 10?
- If you said, "because it has ten counting digits":
- $0,1,2,3,4,5,6,7,8$, and 9
- You are right!
- To count in base ten, you go from 0 to 9
- Then you count in combinations of two digits starting with 10 all the way to 99
- After 99 comes three-digit combinations from 100 999, etc.

Counting Systems - Basic Info

- Regular Counting System
- Let's examine a decimal number:

Thousands place Hundreds place Tens place Ones place

- When we break down this number, we have:
- 2 "thousands" + 7 "hundreds" + 1 "tens" + 3 "ones
- $2000+700+10+3$
- Let's see, in detail, how we get this

Counting Systems - Basic Info

- Regular Counting System

- The decimal number 2713:
- When we break down this number, we have:
- $2000+700+10+3$
- Where does the 2000 come from?
- How do we get 2000?
- Mathematically,
- We said this means we have two "thousands"
- A thousand is 1000
- How do we represent 1000, in terms of 10? 10^{3}
- So 2000 is the same as $2 \times 10^{3}=2 \times 1000=2000$

Counting Systems - Basic Info

- Regular Counting System

- The decimal number 2713:
- Similarly,
- The next digit, 7, means that we have 7 "hundreds"
" We have 7, "100"s
- Mathematically, how do we represent 100 in terms of $10 ?$
- 10^{2}
- So 700 comes from $7 \times 10^{2}=7 \times 100=700$

Counting Systems - Basic Info

- Regular Counting System

- The decimal number 2713:
- Next:
- The next digit, 1 , means that we have 1 "ten"
- We have 1, "10"
- Mathematically, we represent this as 10^{1}
- So 10 comes from $1 \times 10^{1}=1 \times 10=10$
- Finally:
- The last digit, 3, means that we have 3 "ones"
- We have 3, " 1 "s
- How do we represent 1 in terms of 10? As 10°.
- So 3 comes from $3 \times 10^{0}=3 \times 1=3$

Counting Systems - Basic Info

- Regular Counting System

- The decimal number 2713:
- Putting this all together,
$-2713_{10}=2 \times 10^{3}+7 \times 10^{2}+1 \times 10^{1}+3 \times 10^{0}$
- What we learn from this:
- Each digit's value is determined by the place it is in
- Each place is a perfect power of the base
- With the least significant at the end
- Counting up, by 1, as you go through the number from right to left

Counting Systems - Basic Info

- Other Counting Systems
- At first glance, it may seem that this would be the only possible number system
- That is, using 10 digits $(0-9)$
- Turns out, the number of digits used is arbitrary
- We could have chosen to use only 5 digits
- 0-4 (base 5 system)
- Look at how we determine the value of a number:
$-314_{5}=3 \times 5^{2}+1 \times 5^{1}+4 \times 5^{0}=84_{10}$
- Guess what???
- We just converted from base 5 to base 10

Counting Systems - Basic Info

CONVERT from ANY base to base 10

- This example illustrates how we can convert from a different base to base 10
- In general, we write the conversion as follows:
- $d_{n-1} d_{n-2} \ldots d_{2} d_{1} d_{0 \text { (in base })}=d_{n-1} x b^{n-1}+d_{n-2} x b^{n-2}+\ldots+d_{2} x b^{2}+d_{1} x b+d_{0}$
- Note:
- b based to the 1 and 0 powers were simplified above
- Couple quick examples:
$-781_{9}=7 \times 9^{2}+8 \times 9^{1}+1 \times 9^{0}=640_{10}$
$=1110101_{2}=1 \times 2^{6}+1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+$ $1 \times 2^{0}=117_{10}$
- This last one was the very common base 2 (binary)

Counting Systems - Basic Info

- Binary (aka base 2)
- MOST common in computer science
- Why?
- Cuz all your computer "innards" are represented in binary
- All software ultimately boils down to a binary representation
- So here's a little binary chart to get you going:

Decimal	Binary	Decimal	Binary
1	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
7	0111	15	1111
8	1000	16	10000

Counting Systems - Basic Info

- Hexadecimal
- The most common base with more than 10 digits
- Aka base 16
- Meaning there are 16 counting digits
- WAIT!!!
- But we only have 10 possible digits to use!
- 0 through 9
- So that means we are six digits short!
- That is correct.
- It was decided to use the following six additional "digits":
- A, B, C, D, E, and F

Counting Systems - Basic Info

- Hexadecimal
- base 16: use 16 counting digits
- It was decided to use the following six additional "digits":
- A, B, C, D, E, and F
- A represents the value $10, \mathbf{B}$ is $11, \mathbf{C}$ is $12, \mathbf{D}$ is $13, \mathbf{E}$ is 14 , and F is 15
- So here is the single digit sequence for base 16:
- $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$

Counting Systems - Basic Info

- Hexadecimal
- Benefit of Hexadecimal:
- Everything internally (in a computer) is stored in base 2
- binary
- However, when we view contents of memory
- Or when we assign values
- Such as RGB values for colors
- We often view numbers in hexadecimal
- So it is important to be familiar with hexadecimal
- Also important to be able to convert to and from hexadecimal to other bases

Base Conversion Methods

- Conversion from Hexadecimal to Decimal
- This is done EXACTLY the same as shown previously
- $\mathrm{A} 3 \mathrm{D}_{16}=\mathrm{Ax} 16^{2}+3 \times 16^{1}+\mathrm{Dx} 16^{0}$

$$
\begin{aligned}
& =10 \times 16^{2}+3 \times 16^{1}+13 \times 16^{0}=2621_{10} . \\
& =2621_{10} .
\end{aligned}
$$

Base Conversion Methods

- Conversion from Hexadecimal to Binary
- Note:
- 16, as in "base 16 ", is a PERFECT power of 2
- This makes conversion to base 2 (binary) very EASY
- Why?
- Each hexadecimal digit is perfectly represented by 4 binary digits
- Does that make sense?
- A base 16 digit can be up to F (which is 15)
- So, in order to represent, up to 15, in binary
- We MUST have 4 binary digits
- From the chart earlier, we know that 15_{10} is 1111_{2}

Base Conversion Methods

- Conversion from Hexadecimal to Binary
- Note:
- This allows us to make the following "purty" chart showing the conversions from hexadecimal to binary:

Hex:	0	1	2	3	4	5	6	7
Bin:	0000	0001	0010	0011	0100	0101	0110	0111
Hex:	8	9	A	B	C	D	E	F
Bin:	1000	1001	1010	1011	1100	1101	1110	1111

- Using this, we can easily convert from base 16 to base 2
- $\mathrm{A}_{2} \mathrm{D}_{16}=101000111101^{2}$
- F4BC72 ${ }_{16}=11110100101111000111001000010110_{2}$

Base Conversion Methods

CONVERT from ANY base to base 10

- We already went over this one
- In general, the conversion is as follows:
- $d_{n-1} d_{n-2} \ldots d_{2} d_{1} d_{0 \text { (in base b) }}=d_{n-1} x b^{n-1}+d_{n-2} x b^{n-2}+\ldots+d_{2} x b^{2}+d_{1} \times b^{1}+d_{0} x b^{0}$
- Some quick examples:
$-246_{7}=2 x 7^{2}+4 x 7^{1}+6 x 7^{0}=132_{10}$
- $781_{9}=7 x 9^{2}+8 \times 9^{1}+1 x 9^{0}=640_{10}$
- $30122_{4}=3 \times 4^{4}+0 \times 4^{3}+1 \times 4^{2}+2 \times 4^{1}+2 \times 4^{0}=794_{10}$
- $1110101_{2}=1 \times 2^{6}+1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+$ $1 \times 2^{0}=117_{10}$
- This last one was the very common base 2 (binary)

Base Conversion Methods

Conversion from Decimal to Binary

- Given the number 27_{10}
- Convert it to binary
- Basically, we start by dividing 27 by 2
- Integer Division!
- Remember, 27/2 would be 13
- So, $27 / 2$ is 13 with a remainder of 1
- We then divide 13 by 2
- $13 / 2$ is 6 with a remainder of 1
- Continue this process until you get 1
- At that point, you will have $1 / 2$ is 0 with a remainder of 1

Base Conversion Methods

- Conversion from Decimal to Binary
- Convert 27_{10} to binary

| $27 / 2=13$ | with a remainder of | 1 |
| :--- | :--- | :--- | :--- |
| $13 / 2=6$ | with a remainder of | 1 |
| $6 / 2=3$ | with a remainder of | 0 |
| $3 / 2=1$ | with a remainder of | 1 |
| $1 / 2=0$ | with a remainder of | 1 |

So, 27_{10} is the same as 11011_{2}

- You stop when you get 0 as an answer
- Of course, the final remainder will be 1
- Now, how do you determine the equivalent binary \# ?
- Read the remainders from bottom to top!

Base Conversion Methods

- Conversion from Decimal to Binary
- Another example: Convert 117_{10} to binary

$117 / 2=58$	with a remainder of
$58 / 2=29$	with a remainder of
2	
$29 / 2=14$	with a remainder of
$14 / 2=7$	with a remainder of
0	
$7 / 2=3$	with a remainder of
$3 / 2=1$	with a remainder of
1	
$1 / 2=0$	with a remainder of
1	

So, 117_{10} is the same as 1110101_{2}

- You stop when you get 0 as an answer
- Read the remainders from bottom to top to get binary \#

Base Conversion Methods

Conversion from Decimal to Any Other Base

- The previous example worked great for base 2
- Turns out that this method is not specific to base 2
- Meaning, the same logic can be applied to convert from decimal to ANY other base!
- Let's look at a couple of examples...

Base Conversion Methods

- Conversion from Decimal to Any Other Base
- Convert 381_{10} to base 16 (hexadecimal)

$381 / 16=23$	with a remainder of	13	
$23 / 16=1$	with a remainder of		
$1 / 16=0$	with a remainder of	(D) 1	So, 381_{10} is the same as $17 D_{16}$

- Start by dividing 381 by the BASE (to convert to)
- SAME idea: you stop when you get 0 as an answer
- The final remainder could be anything 1 through 15 (F)
- Now, how do you determine the equivalent base 16 \# ?
- Read the remainders from bottom to top!

Base Conversion Methods

- Conversion from Decimal to Any Other Base
- Convert 175_{10} to base 3 (ternary)

$175 / 3=58$	with a remainder of	1
$58 / 3=19$	with a remainder of	
1		
$19 / 3=6$	with a remainder of	
1		
$6 / 3=2$	with a remainder of	
0		
$2 / 3=0$	with a remainder of	2

So, 175_{10} is the same as 20111_{3}

- Again, start by dividing 175 by the BASE (to convert to)
- SAME idea: you stop when you get 0 as an answer
- In this case, the final remainder could be 1 or 2
- Now, how do you determine the equivalent base 3 \# ?
- Read the remainders from bottom to top!

Brief Interlude: Bike Fail (non-UCF)

UCF Daily Bike Fail

Base Conversion Methods

- Generic Conversion Process
- Convert from ANY base (call it B1)
- To ANY to other base (call it B2)
- where NEITHER of the bases are base 10
- This is a two step process:

1) Convert from B1 to base 10
2) Convert from base 10 to B2

- How to do this should be straightforward:
- You simply utilize both of the methods already shown

Base Conversion Methods

- Generic Conversion Process
- Convert 125_{7} to base 4
- This is a two step process:

1) Convert 125_{7} to base 10

- Solution:
- $125_{7}=1 \times 7^{2}+2 \times 7^{1}+5 \times 7^{0}=68_{10}$
- Refer to slide 17 for a reminder of how to do this step if there is confusion

Base Conversion Methods

- Generic Conversion Process
- Convert 125_{7} to base 4
- This is a two step process:

2) Now, convert $68{ }_{10}$ to base 4

Final Answer: 125_{7} converts
to 1010_{4}

- Solution:

So, 125_{7} is the same as 68_{10}, which is the same as 1010_{4}

Base Conversion Methods

- Generic Conversion Process
- If you are converting between two bases (B1 \& B2) that are BOTH a perfect power of 2
- You can use the method we just showed.
- But the following process works more quickly:

1) Convert from B1 to base 2
2) Convert from base 2 to $B 2$

- Part 1 should be straightforward:
- We just need to briefly look at Part 2

Base Conversion Methods

- Generic Conversion Process
- Convert A3D ${ }_{16}$ to base 8 (octal)
- Notice they are both perfect powers of 2
- This is a two step process:

1) Convert $A 3 D_{16}$ to base 2

- Solution:
- For this part, we just put the binary equivalent of each digit
- $A 3 D_{16}=101000111101_{2}$

Base Conversion Methods

- Generic Conversion Process
- Convert A3D ${ }_{16}$ to base 8 (octal)
- Notice they are both perfect powers of 2
- This is a two step process:

2) Now, convert 101000111101_{2} to base 8

- Solution:
- Think:
- How many possible counting digits are there in base 8?
- DUH!
- There are 8! Hence base 8! They are 0 through 7.

Base Conversion Methods

- Generic Conversion Process
- Convert A3D ${ }_{16}$ to base 8 (octal)
- Notice they are both perfect powers of 2
- This is a two step process:

2) Now, convert 101000111101_{2} to base 8

- Solution:
- Think:
- Now, how many binary digits does it take to perfectly represent one octal (base 8) digit?
- Three!
- Why? Cuz $8=2^{3}$

Base Conversion Methods

- Generic Conversion Process
- Convert A3D ${ }_{16}$ to base 8 (octal)
- Notice they are both perfect powers of 2
- This is a two step process:

2) Now, convert 101000111101_{2} to base 8

- Solution:
- So group the binary digits, in SETS OF THREE
- From right to left
- Then convert each set of three binary digits to its octal equivalent

Base Conversion Methods

- Generic Conversion Process
- Convert A3D ${ }_{16}$ to base 8 (octal)
- Notice they are both perfect powers of 2
- This is a two step process:

2) Now, convert 101000111101_{2} to base 8

- Solution:
- 101000111101_{2}

Final Answer:

- Just rewrite this with different spacing: $\underline{101} \underline{000} \underline{111} \underline{101}_{2}$
- Convert each set of three digits:
- 5075_{8}

Base Conversions

$$
\begin{aligned}
& \text { We're done! } \\
& \text { WASN'T THAT } \\
& \text { STUPENDOUS! }
\end{aligned}
$$

Daily Demotivator

Because Nothing Says "You're a Loser" Than Owning a Motivational Poster About Being a Winner.

Base Conversions

Computer Science Department University of Central Florida

COP 3502 - Computer Science I

