
Computer Science Department
University of Central Florida

And More
Recursion

COP 3502 – Computer Science I

And More Recursion page 2

Binary Search – A reminder

 Array Search
 We are given the following sorted array:

 We are searching for the value, 19 (for example)
 Remember, we said that you search the middle

element
 If found, you are done
 If the element in the middle is greater than 19

 Search to the LEFT (cuz 19 MUST be to the left)

 If the element in the middle is less than 19
 Search to the RIGHT (cuz 19 MUST then be to the right)

index 0 1 2 3 4 5 6 7 8
value 2 6 19 27 33 37 38 41 118

And More Recursion page 3

Binary Search – A reminder

 Array Search
 We are given the following sorted array:

 We are searching for the value, 19
 So, we MUST start the search in the middle

INDEX of the array.
 In this case:

 The lowest index is 0
 The highest index is 8
 So the middle index is 4

index 0 1 2 3 4 5 6 7 8
value 2 6 19 27 33 37 38 41 118

And More Recursion page 4

Binary Search

 Array Search
 Correct Strategy

 We would ask, “is the number I am searching for, 19,
greater or less than the number stored in index 4?
 Index 4 stores 33

 The answer would be “less than”
 So we would modify our search range to in between

index 0 and index 3
 Note that index 4 is no longer in the search space

 We then continue this process
 The second index we’d look at is index 1, since (0+3)/2=1
 Then we’d finally get to index 2, since (2+3)/2 = 2
 And at index 2, we would find the value, 19, in the array

And More Recursion page 5

Binary Search

 Binary Search code:
int binsearch(int a[], int len, int value) {

int low = 0, high = len-1;
while (low <= high) {

int mid = (low+high)/2;
if (value < a[mid])

high = mid-1;
else if (value > a[mid])

low = mid+1;
else

return 1;
}

return 0;
}

And More Recursion page 6

Binary Search

 Binary Search code:
 At the end of each array iteration, all we do is

update either low or high
 This modifies our search region

 Essentially halving it

 As we saw previously, this runs in log n time

 But this iterative code isn’t the easiest to read
 We now look at the recursive code

 MUCH easier to read and understand

And More Recursion page 7

Binary Search – Recursive

 Binary Search using recursion:
 We need a stopping case:

 We need to STOP the recursion at some point

 So when do we stop:
1) When the number is found!
2) Or when the search range is nothing

 huh?
 The search range is empty when (low > high)

 So how let us look at the code…

And More Recursion page 8

Binary Search – Recursive

 Binary Search Code (using recursion):
 We see how this code follows from the

explanation of binary search quite easily

int binSearch(int *values, int low, int high, int searchval)
int mid;
if (low <= high) {

mid = (low+high)/2;
if (searchval < values[mid])

return binSearch(values, low, mid-1, searchval);
else if (searchval > values[mid])

return binSearch(values, mid+1, high, searchval);
else

return 1;
}
return 0;

}

And More Recursion page 9

Binary Search – Recursive

 Binary Search Code (using recursion):
 So if the value is found

 We return 1

 Otherwise,
 if (searchval < values[mid])

 Then recursively call binSearch to the LEFT
 else if (searchval > values[mid])

 Then recursively call binSearch to the RIGHT

 If low ever becomes greater than high
 This means that searchval is NOT in the array

And More Recursion page 10

Brief Interlude: Human Stupidity

And More Recursion page 11

Recursive Exponentiation

 Example from Previous lecture
 Our function:

 Calculates be

 Some base raised to a power, e
 The input is the base, b, and the exponent, e
 So if the input was 2 for the base and 4 for the exponent

 The answer would be 24 = 16

 How do we do this recursively?
 We need to solve this in such a way that part of the

solution is a sub-problem of the EXACT same nature of
the original problem.

And More Recursion page 12

Recursive Exponentiation

 Example from Previous lecture
 Our function:

 Using b and e as input, here is our function
 f(b,e) = be

 So to make this recursive, can we say:
 f(b,e) = be = b*b(e-1)

 Does that “look” recursive?
 YES it does!
 Why?
 Cuz the right side is indeed a sub-problem of the original
 We want to evaluate be

 And our right side evaluates b(e-1)

And More Recursion page 13

Recursive Exponentiation

 Example from Previous lecture
 Our function:

 f(b,e) = b*b(e-1)

 So we need to determine the terminating condition!
 We know that f(b,0) = b0 = 1

 So our terminating condition can be when e = 1
 Additionally, our recursive calls need to return an

expression for f(b,e) in terms of f(b,k)
 for some k < e

 We just found that f(b,e) = b*b(e-1)

 So now we can write our actual function…

And More Recursion page 14

Recursive Exponentiation

 Example from Previous lecture
 Code:

// Pre-conditions: e is greater than or equal to 0.
// Post-conditions: returns be.
int Power(int base, int exponent) {

if (exponent == 0)
return 1;

else
return (base*Power(base, exponent-1));

}

And More Recursion page 15

Recursive Exponentiation

 Example from Previous lecture
 Say we initially call the function with 2 as our base

and 8 as the exponent
 The final return will be

 return 2*2*2*2*2*2*2*2
 Which equals 256

 You notice we have 7 multiplications (exp was 8)
 The number of multiplications needed is one less

than the exponent value
 So if n was the exponent

 The # of multiplications needed would be n-1

And More Recursion page 16

Fast Exponentiation

 Example from Previous lecture
 This works just fine
 BUT, it becomes VERY slow for large exponents

 If the exponent was 10,000, that would be 9,999 mults!

 How can we do better?

 One key idea:
 Remembering the laws of exponents

 Yeah, algebra…the thing you forgot about two years ago
 So using the laws of exponents

 We remember that 28 = 24*24

And More Recursion page 17

Fast Exponentiation

 Example from Previous lecture
 One key idea:

 Remembering the laws of exponents
 28 = 24*24

 Now, if we know 24

 we can calculate 28 with one multiplication
 What is 24?

 24 = 22*22

 and 22 = 2*(2)
 So… 2*(2) = 4, 4*(4) = 16, 16*(16) = 256 = 28

 So we’ve calculated 28 using only three multiplications
 MUCH better than 7 multiplications

And More Recursion page 18

Fast Exponentiation

 Example of Fast Exponentiation
 So, in general, we can say:
 bn = bn/2*bn/2

 So to find bn, we find bn/2

 HALF of the original amount

 And to find bn/2, we find bn/4

 Again, HALF of bn/2

 This smells like a log n running time
 log n number of multiplications
 Much better than n multiplications

 But as of now, this only works if n is even

And More Recursion page 19

Fast Exponentiation

 Example of Fast Exponentiation
 So, in general, we can say:
 bn = bn/2*bn/2

 This works when n is even
 But what if n is odd?
 Notice that 29 = 24*24*2
 So, in general, we can say:

/ 2 / 2

/ 2 / 2

() if n is even
()() if n is odd

n n
n

n n

a a
a

a a a

=

And More Recursion page 20

Fast Exponentiation

 Example of Fast Exponentiation
 Also, this method relies on “integer division”

 We’ve briefly discussed this
 Basically if n is 9, then n/2 = 4

 Integer division
 Think of it as dividing
 AND then rounding down, if needed, to the nearest integer

 So if n is 121, then n/2 = 60
 Finally, if n is 57, then n/2 = 28

 Using the same base case as the previous
power function, here is the code…

And More Recursion page 21

Fast Exponentiation

 Example of Fast Exponentiation
 Code:

int powerB(int base, int exp) {
if (exp == 0)

return 1;
else if (exp == 1)

return base;
else if (exp%2 == 0)

return powerB(base*base, exp/2);
else

return base*powerB(base, exp-1);
}

And More Recursion page 22

Recursion

WASN’T
THAT

BODACIOUS!

And More Recursion page 23

Daily Demotivator

Computer Science Department
University of Central Florida

And More
Recursion

COP 3502 – Computer Science I

	And More Recursion
	Binary Search – A reminder
	Binary Search – A reminder
	Binary Search
	Binary Search
	Binary Search
	Binary Search – Recursive
	Binary Search – Recursive
	Binary Search – Recursive
	Brief Interlude: Human Stupidity
	Recursive Exponentiation
	Recursive Exponentiation
	Recursive Exponentiation
	Recursive Exponentiation
	Recursive Exponentiation
	Fast Exponentiation
	Fast Exponentiation
	Fast Exponentiation
	Fast Exponentiation
	Fast Exponentiation
	Fast Exponentiation
	Recursion
	Daily Demotivator
	And More Recursion

