
Computer Science Department
University of Central Florida

More Recursion:
Permutations

COP 3502 – Computer Science I

More Recursion: Permutations page 2

Permutations

 The Permutation problem:
 Given a list of items,

 List ALL the possible orderings of those items
 Often, we work with permutations of letters

 For example:
 Here are all the permutations of the letters CAT:

 The question: can we write a program to do this?

CAT
CTA
ACT

ATC
TAC
TCA

More Recursion: Permutations page 3

Permutations

 The Permutation algorithm:
 There are several different permutation

algorithms
 Since recursion is an emphasis of the course,

 we will present a recursive algorithm to solve this

 Permutations of the letters CAT:

CAT
CTA
ACT

ATC
TAC
TCA

More Recursion: Permutations page 4

Permutations

 The Permutation algorithm:
 The idea is as follows:

 We want to list ALL the permutations of CAT
 So we split our work into 3 groups of permutations:

1) Permutations that start with C
2) Permutations that start with A
3) Permutations that start with T

More Recursion: Permutations page 5

Permutations

 The Permutation algorithm:
 The idea is as follows:

 Notice what happens:
 What can we say about ALL of the permutations that

start with the letter C?
 Think about recursion…
 Think about the idea of wanting to reduce your problem to a

smaller problem of the same form…

 ALL of the permutations that start with the letter C,
 Are SIMPLY three-character strings that are formed by

attaching C to the front of ALL permutations of “AT”

 So this is nothing but another, smaller permutation
problem of the same form!!!

More Recursion: Permutations page 6

Permutations – Recursive Calls

 The Permutation algorithm:
 The # of recursive calls needed:
 General “rule of thumb” for recursion:

 “recursive functions don’t have loops”
 cuz we use recursion!
 Either you have iteration, hence loops
 Or recursion…no need for loops

 However, this rule of thumb is just that
 It’s not always true
 One exception is this permutation algorithm

More Recursion: Permutations page 7

Permutations – Recursive Calls

 The Permutation algorithm:
 The # of recursive calls needed:
 Look at the example with three letters, CAT

 We need THREE recursive calls, one for each letter
 Remember, we said we split the work into three groups:
1) Permutations that start with C
2) Permutations that start with A
3) Permutations that start with T

 But what if we were permuting the letters of the
word “computer”
 EIGHT recursive calls would be needed
 1 for each possible starting letter

More Recursion: Permutations page 8

Permutations – Recursive Calls

 The Permutation algorithm:
 The # of recursive calls needed:
 So we see the need for a loop in our algorithm:

 Now, what is the terminating condition?

for (each possible starting letter) {
list all permutations that start
with that letter

}

More Recursion: Permutations page 9

Permutations – Recursive Calls

 The Permutation algorithm:
 The # of recursive calls needed:
 Terminating condition:

 Permuting either 0 or 1 element
 Right.?.

 Cause if there is only 1 element or 0 elements, then there is
nothing to permute!

 In our code, we will use 0 as the terminating condition
 When there are 0 elements left
 This can only be done in one way

More Recursion: Permutations page 10

Permutations – Extra Parameter

 The Permutation algorithm:
 Use of an extra parameter:

 As seen previously, some recursive functions take in an
extra parameter
 When compared to their iterative counterparts
 Usually for the purpose of reducing towards the terminating,

or base, case
 This is the case for our permutation algorithm

 In order for the recursive permutation to work correctly
 We must specify one additional piece of information

 And now to our function…

More Recursion: Permutations page 11

Permutations – Recursive Function

 The Permutation algorithm:
 Function Prototype

 With Pre-conditions and Post-conditions:

 So k refers to the first k characters that are fixed in
their original positions

// Pre-condition: str is a valid C String, and
// k is non-negative and less than
// or equal to the length of str.
// Post-condition: All of the permutations of str
// with the first k characters fixed
// in their original positions are
// printed. Namely, if n is the
// length of str, then (n-k)!
// permutations are printed.
void RecursivePermute(char str[], int k);

More Recursion: Permutations page 12

Permutations – Recursive Function

 The Permutation algorithm:
 Terminating condition:

 Terminate when k is equal to the length of the string, str
 Think about that:
 k refers to the first k characters in the string that are fixed
 So if k is equal to the length of the actual string
 This means that ALL of the letters in str are fixed!
 If/when this becomes the case

 We simply want to print out that permutation

 If we do NOT terminate:
 We want a for loop that tries each character at index k

More Recursion: Permutations page 13

Permutations – Recursive Function

 The Permutation algorithm:
 The main for loop within the recursive algorithm:

 But how do we get different characters (the ‘C’,
the ‘A’, and the ‘T’) at the first position???
 C is the first character in the word CAT
 So how do we make ‘A’ become the first character

for (j=k; j<strlen(str); j++) {
ExchangeCharacters(str, k, j);
RecursivePermute(str, k+1);
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 14

Permutations – Recursive Function

 The Permutation algorithm:
 The main for loop within the recursive algorithm:

 ExchangeCharacters function:
 This function will take in our string (str) and it will

SWAP two characters within that string.
 Which two characters:

 The character at index k will SWAP with the one at index j

for (j=k; j<strlen(str); j++) {
ExchangeCharacters(str, k, j);
RecursivePermute(str, k+1);
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 15

Permutations – Recursive Function

 The Permutation algorithm:
 Let’s take a closer look at this specific function:

 So we send over a string and then SWAP the
characters at the two specified indices

// Pre-condition: str is a valid C String and i and j are
// valid indexes to that string.
// Post-condition: The characters at index i and j will
// be swapped in str.
void ExchangeCharacters(char str[], int i, int j) {

char temp = str[i];
str[i] = str[j];
str[j] = temp;

}

More Recursion: Permutations page 16

Permutations – Recursive Function

 The Permutation algorithm:
 Again, the main loop within the recursive algorithm:

 ExchangeCharacters function:
 Remember the three letter example, CAT
 We said that we need to find ALL permutations with C as

the first character, A as the first, and with T as the first

for (j=k; j<strlen(str); j++) {
ExchangeCharacters(str, k, j);
RecursivePermute(str, k+1);
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 17

Permutations – Recursive Function

 The Permutation algorithm:
 Again, the main loop within the recursive algorithm:

 ExchangeCharacters function:
 This function SWAPS the two characters at the indices

passed in as the last two arguments to the function
 We then recursively call the permute function
 Then we SWAP the characters back to their spots

for (j=k; j<strlen(str); j++) {
ExchangeCharacters(str, k, j);
RecursivePermute(str, k+1);
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 18

Brief Interlude: Human Stupidity

More Recursion: Permutations page 19

Permutations – Recursive Function
void RecursivePermute(char str[], int k) {

int j;

// Base-case: All fixed, so print str.
if (k == strlen(str))

printf("%s\n", str);
else {

// Try each letter in spot j.
for (j=k; j<strlen(str); j++) {

// Place next letter in spot k.
ExchangeCharacters(str, k, j);

// Print all with spot k fixed.
RecursivePermute(str, k+1);

// Put the old char back.
ExchangeCharacters(str, j, k);

}
}

} Let’s look at this in more detail.

More Recursion: Permutations page 20

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 We send over two parameters to the function:
1) The actual string we want to permute
2) And the integer k

 Represents the first k characters that are FIXED at their spots

void RecursivePermute(char str[], int k) {
int j;

// Base-case: All fixed, so print str.
if (k == strlen(str))

printf("%s\n", str);

More Recursion: Permutations page 21

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 Using CAT as our example string:
1) We send over the string, CAT
2) And the integer k (currently set to zero)

 Representing that ZERO characters are initially FIXED.

void RecursivePermute(char str[], int k) {
int j;

// Base-case: All fixed, so print str.
if (k == strlen(str))

printf("%s\n", str);

More Recursion: Permutations page 22

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 Base case:
 If k is equal to the length of our string

 Meaning that ALL characters are fixed
 Then there is no more characters to permute
 Just print out the resulting string!

void RecursivePermute(char str[], int k) {
int j;

// Base-case: All fixed, so print str.
if (k == strlen(str))

printf("%s\n", str);

More Recursion: Permutations page 23

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 ALL other cases (non-base cases):
 If k does NOT equal the length of the string
 Means there are some characters that have not been FIXED
 Means that there are more options to permute
 We have to try those unused characters at index k

void RecursivePermute(char str[], int k) {
// PREVIOUS CODE
else {

// Try each letter in spot j.
for (j=k; j<strlen(str); j++) {

//
// ... code here
//

More Recursion: Permutations page 24

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 ALL other cases (non-base cases):
 So we call this for loop
 It iterates the number of times EQUAL to the number of

possible characters that can go into index k

for (j=k; j<strlen(str); j++) {
// Place next letter in spot k.
ExchangeCharacters(str, k, j);
// Print all perms. with spot k fixed.
RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 25

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 ALL other cases (non-base cases):
 Again, k refers to the number of FIXED positions
 For example, if k is 2

 Meaning, index 0 and index 1 are FIXED
 Then the first NON-FIXED location is index 2

for (j=k; j<strlen(str); j++) {
// Place next letter in spot k.
ExchangeCharacters(str, k, j);
// Print all perms. with spot k fixed.
RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

}

…the value of k!

More Recursion: Permutations page 26

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 For all possible characters that could be placed at index k
(the next possible NON-FIXED spot):
 ExchangeCharacters(str, k, j)

 Means SWAP the characters at index k and j
 Meaning, try all possible (remaining) values at index k
for (j=k; j<strlen(str); j++) {

// Place next letter in spot k.
ExchangeCharacters(str, k, j);
// Print all with spot k fixed.
RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 27

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 For all possible characters at index k:
 So if we had just started this function

 Input was CAT for the string and k equal to zero
 this for loop would run three times (length of CAT)

 Each time, the first line would try each character at index 0

for (j=k; j<strlen(str); j++) {
// Place next letter in spot k.
ExchangeCharacters(str, k, j);
// Print all with spot k fixed.
RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 28

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 For all possible characters at index k:
 This is what we said earlier, split the work into 3 parts:

 Permutations that start with C
 Permutations that start with A
 Permutations that start with T

for (j=k; j<strlen(str); j++) {
// Place next letter in spot k.
ExchangeCharacters(str, k, j);
// Print all with spot k fixed.
RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 29

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 So the for loop iterates three times (for CAT)
 First line of code makes each letter the first spot of the string
 The second line then recursively calls the function

 The arguments are the string (updated with a new, 1st character)
 And the new value for k (referring to the # of FIXED spots)

for (j=k; j<strlen(str); j++) {
// Place next letter in spot k.
ExchangeCharacters(str, k, j);
// Print all with spot k fixed.
RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 30

Permutations – Recursive Function

 The Permutation algorithm:
 Code in detail:

 So the for loop iterates three times (for CAT)
 Third and final line of code
 Simply switches back the characters that we swapped with the

first line of code (of the for loop)

for (j=k; j<strlen(str); j++) {
// Place next letter in spot k.
ExchangeCharacters(str, k, j);
// Print all with spot k fixed.
RecursivePermute(str, k+1);
// Put the old char back.
ExchangeCharacters(str, j, k);

}

More Recursion: Permutations page 31

Recursion

WASN’T
THAT

BODACIOUS!

More Recursion: Permutations page 32

Daily Demotivator

Computer Science Department
University of Central Florida

More Recursion:
Permutations

COP 3502 – Computer Science I

	More Recursion:�Permutations
	Permutations
	Permutations
	Permutations
	Permutations
	Permutations – Recursive Calls
	Permutations – Recursive Calls
	Permutations – Recursive Calls
	Permutations – Recursive Calls
	Permutations – Extra Parameter
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Brief Interlude: Human Stupidity
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Permutations – Recursive Function
	Recursion
	Daily Demotivator
	More Recursion:�Permutations

