Computer Science I - Summer 2011
 Recitation \#5: Recurrence Relations \& Summations (Solutions)

Solve the following recurrence relations using the iteration technique:

1) $T(n)=T(n-1)+7, \quad T(1)=4$
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+7$
$T(1)=4$
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+7=[\mathrm{T}(\mathrm{n}-2)+7]+7=\mathrm{T}(\mathrm{n}-2)+7+7$
$T(n)=T(n-2)+2 * 7$
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-2)+2 * 7=[\mathrm{T}(\mathrm{n}-3)+7]+2 * 7=\mathrm{T}(\mathrm{n}-3)+7+2 * 7$
$T(n)=T(n-3)+3 * 7$
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-3)+3 * 7=[\mathrm{T}(\mathrm{n}-4)+7]+3 * 7=T(\mathrm{n}-4)+7+3 * 7$
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-4)+4 * 7$
Do it one more time...
$T(n)=T(n-5)+5 * 7$
So now rewrite these five equations and look for a pattern:

$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+1^{* 7}$		$1^{\text {st }}$ step of recursion
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-2)+2 * 7$	$2^{\text {nd }}$ step of recursion	
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-3)+3 * 7$	$3^{\text {rd }}$ step of recursion	
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-4)+4^{*} 7$	$4^{\text {th }}$ step of recursion	
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-5)+5^{*} 7$	$5^{\text {th }}$ step of recursion	

Generalized recurrence relation at the kth step of the recursion:
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-\mathrm{k})+\mathrm{k} * 7$
We want $T(1)$. So we let $n-k=1$. Solving for k, we get $k=n-1$. Now plug back in.
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-\mathrm{k})+\mathrm{k}^{*} 7$
$T(n)=T(1)+7 *(n-1)$, and we know $T(1)=4$
$\mathrm{T}(\mathrm{n})=4+7 *(\mathrm{n}-1)=7 \mathrm{n}-7+4=7 \mathrm{n}-3$
We are done. Right side does not have any T(...)'s. This recurrence relation is now solved in its closed form, and it runs in $\mathrm{O}(\mathrm{n})$ time.
2) $T(n)=2 T\left(\frac{n}{2}\right)+2, T(1)=2$
$T(n)=2 T(n / 2)+2$
$\mathrm{T}(1)=2$
$\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+2=2[2 \mathrm{~T}(\mathrm{n} / 4)+2]+2=4 \mathrm{~T}(\mathrm{n} / 4)+4+2$
$T(n)=4 T(n / 4)+6$
$\mathrm{T}(\mathrm{n})=4 \mathrm{~T}(\mathrm{n} / 4)+6=4[2 \mathrm{~T}(\mathrm{n} / 8)+2]+6=8 \mathrm{~T}(\mathrm{n} / 8)+8+6$

Substituting Equations
$\mathrm{n} \rightarrow \mathrm{n} / 2$
$T(n / 2)=2 T(n / 4)+2$
$T(n / 4)=2 T(n / 8)+2$
$T(n / 8)=2 T(n / 16)+2$
$T(n / 16)=2 T(n / 32)+2$
$T(n)=8 T(n / 8)+14$
$\mathrm{T}(\mathrm{n})=8 \mathrm{~T}(\mathrm{n} / 8)+14=8[2 \mathrm{~T}(\mathrm{n} / 16)+2]+14=16 \mathrm{~T}(\mathrm{n} / 16)+16+14$
$T(n)=16 T(n / 16)+30$
$\mathrm{T}(\mathrm{n})=16 \mathrm{~T}(\mathrm{n} / 16)+30=16[2 \mathrm{~T}(\mathrm{n} / 32)+2]+30=32 \mathrm{~T}(\mathrm{n} / 32)+32+30$
$T(n)=32 T(n / 32)+62$
Do it again:
$T(n)=64 T(n / 64)+126$
So now rewrite these five equations and look for a pattern:

$\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+2$	$=2^{1} \mathrm{~T}\left(\mathrm{n} / 2^{1}\right)+2^{2}-2$	$1^{\text {st }}$ step of recursion
$\mathrm{T}(\mathrm{n})=4 \mathrm{~T}(\mathrm{n} / 4)+6$	$=2^{2} \mathrm{~T}\left(\mathrm{n} / 2^{2}\right)+2^{3}-2$	$2^{\text {nd }}$ step of recursion
$\mathrm{T}(\mathrm{n})=8 \mathrm{~T}(\mathrm{n} / 8)+14$	$=2^{3} \mathrm{~T}\left(\mathrm{n} / 2^{3}\right)+2^{4}-2$	$3{ }^{\text {rd }}$ step of recursion
$\mathrm{T}(\mathrm{n})=16 \mathrm{~T}(\mathrm{n} / 16)+30$	$=2^{4} T\left(n / 2^{4}\right)+2^{5}-2$	$4^{\text {th }}$ step of recursion
$\mathrm{T}(\mathrm{n})=32 \mathrm{~T}(\mathrm{n} / 32)+62$	$=2^{5} \mathrm{~T}\left(\mathrm{n} / 2^{5}\right)+2^{6}-2$	$5^{\text {th }}$ step of recursion
$\mathrm{T}(\mathrm{n})=64 \mathrm{~T}(\mathrm{n} / 64)+126$	$=2^{6} \mathrm{~T}\left(\mathrm{n} / 2^{6}\right)+2^{7}-2$	$6{ }^{\text {th }}$ step of recursion

In general, after k iterations, we have:

$T(n)=2^{k} T\left(\frac{n}{2^{k}}\right)+2^{k+1}-2$
We're not done since we still have $\mathrm{T}(\ldots$.$) 's on the right side of the equation. We need to get$ down to $\mathrm{T}(1)$. How?

We have $T\left(n / 2^{k}\right)$, and we want $T(1)$. So let $n=2^{k}$. We will then have $T\left(2^{k} / 2^{k}\right)$, which equals $T(1)$. So use that substitution $\left(\mathrm{n}=2^{\mathrm{k}}\right)$ throughout the entire generalized, kth recurrence relation.
$T(n)=2^{k} T\left(\frac{n}{2^{k}}\right)+2^{k+1}-1=n * T\left(\frac{2^{k}}{2^{k}}\right)+2 n-1=n * T(1)+2 n-1$
$T(n)=n * 2+2 n-1=4 n-1$
So, $T(n)=4 n-1$ and runs in $O(n)$ time.
3) $T(n)=T\left(\frac{n}{2}\right)+n, T(1)=1$, Hint: $\sum_{i=0}^{\infty} \frac{n}{2^{i}}=2 n$ (Just get an approximate solution here.)
==
$T(n)=T\left(\frac{n}{2}\right)+n$
$T(n)=T\left(\frac{n}{4}\right)+\frac{n}{2}+n$
$T(n)=T\left(\frac{n}{8}\right)+\frac{n}{4}+\frac{n}{2}+n$
Here's the generalized recurrence relation for the $\mathrm{k}^{\text {th }}$ step of the recursion:
$T(n)=T\left(\frac{n}{2^{k}}\right)+\frac{n}{2^{k-1}}+\frac{n}{2^{k-2}}+\cdots \frac{n}{2^{3}}+\frac{n}{2^{2}}+\frac{n}{2^{1}}+\boldsymbol{n}$
Look at the bolded portion: let's refer to it as the "stuff remaining". Unfortunately, there is no direct way to represent this series. Like on previous, simple examples, if we had "k" 7's on step k of the recursion, we would simply represent that as $\mathrm{k}^{*} 7$. But, it is not that easy here.

So what do you do? Express (write out) that series as a summation, where the step of the recursion is part of the limit of the summation. So on the $3^{\text {rd }}$ step of the recursion, we had these three expressions that were added together:
$\frac{n}{4}+\frac{n}{2}+n$
Remember, this is the $3^{\text {rd }}$ step of the recursion. How can you write this as a summation?
$\sum_{i=0}^{2} \frac{n}{2^{i}}=\frac{n}{2^{0}}+\frac{n}{2^{1}}+\frac{n}{2^{2}}=\frac{n}{1}+\frac{n}{2}+\frac{n}{4}=n+\frac{n}{2}+\frac{n}{4}$
So now that we've represented the "stuff" for the $3^{\text {rd }}$ step of recursion. Try it for the $117^{\text {th }}$ step! $\sum_{i=0}^{116} \frac{n}{2^{i}}$

Finally, express this "remaining stuff" for the $\mathrm{k}^{\text {th }}$ step:
$\sum_{i=0}^{k-1} \frac{n}{2^{i}}$
So, at the kth step of the recursion, we have the following generalized recurrence relation:
$T(n)=T\left(\frac{n}{2^{k}}\right)+\sum_{i=0}^{k-1} \frac{n}{2^{i}}$
Now, we can solve; but we will need to make use of the hint given at the beginning!

Using the hint, we find that this summation is approximately 2 n . (It's more accurately $2 \mathrm{n}-2$, but this is a very minor difference from the infinite sum given.)
$T(n) \sim T\left(\frac{n}{2^{k}}\right)+2 n$
We have $T\left(n / 2^{k}\right)$, and we want $T(1)$. So like on the last example, let $n=2^{k}$. We will then have $T\left(2^{k} / 2^{k}\right)$, which equals $T(1)$. Plug in:
$T(n) \sim T\left(\frac{2^{k}}{2^{k}}\right)+2 n=T(1)+2 n$
$T(n) \sim 1+2 n$

So this also runs in $\mathrm{O}(\mathrm{n})$ time.

