Computer Science I - Summer 2011 Recitation \#4: Algorithm Analysis (Solutions)

1)For an $O\left(n^{3}\right)$ algorithm, one data set with $n=3$ takes 54 seconds. How long will it take for a data set with $n=5$?

Solution
Let $T(n)$ be the function for the run time of the algorithm. Then, $T(n)=c n^{3}$ for some constant c.
$\mathrm{T}(3)=\mathrm{c} 3^{3}=54$

$$
27 \mathrm{c}=54, \text { so } \mathrm{c}=2
$$

$T(5)=c 5^{3}=2(125)=250$ seconds.
2)For an $O\left(2^{n}\right)$ algorithm, a friend tells you that it took 17 seconds to run on her data set on a $\mathrm{O}\left(2^{\mathrm{n}}\right)$ algorithm. You run the same program, on the same machine, and your data set with $\mathrm{n}=7$ takes 68 seconds. What size was her data set?

Solution
Let $T(n)$ be the function for the run time of the algorithm. Then, $T(n)=c 2^{n}$ for some constant c.
$\mathrm{T}(7)=\mathrm{c} 2^{7}=68$
$128 \mathrm{c}=68$, so $\mathrm{c}=68 / 128=17 / 32$.
$\mathrm{T}(\mathrm{n})=\mathrm{c} 2^{\mathrm{n}}=17\left(2^{\mathrm{n}}\right) / 32=17$, so $2^{\mathrm{n}}=32$ and $\mathrm{n}=5$.
3)For an $\mathrm{O}\left(\mathrm{N}^{\mathrm{k}}\right)$ algorithm, where k is a positive integer, an instance of size M takes 32 seconds to run. Suppose you run an instance of size 2 M and find that it takes 512 seconds to run. What is the value of k ?

Solution
Let $T(n)$ be the function for the run time of the algorithm. Then, $T(n)=c n^{k}$ for some constant c.
$\mathrm{T}(\mathrm{m})=\mathrm{cm}^{\mathrm{k}}=32$
$T(2 m)=c(2 m)^{k}=c 2^{k} m^{k}=512$, but since $\mathrm{cm}^{\mathrm{k}}=32$, substituting, we have:
$32\left(2^{k}\right)=512$
$2^{k}=16$
$\mathrm{k}=4$
4) Assume that an $\mathrm{O}\left(\log _{2} N\right)$ algorithm runs for 10 milliseconds when the input size (N) is 32 . What is input size makes the algorithm run for 14 milliseconds?

Solution

Let $T(n)$ be the function for the run time of the algorithm. Then, $T(n)=c \log _{2} n$ for some constant c.

```
\(\mathrm{T}(32)=\operatorname{clog}_{2} 32=10\)
        \(5 \mathrm{c}=10\), so \(\mathrm{c}=2\)
\(T(n)=2 \log _{2} n=14\), so \(\log _{2} n=7\) and \(n=2^{7}=128\).
5)
int function5(int \(A[]\), int \(B[]\), int \(n)\) \{
    int i, j, sum = 0;
    for (i=0; i<n; i++)
        for (j=0; j<n; j++)
            if (A[i] == B[j])
                sum++;
    return sum;
\}
```


Solution

The if statement gets executed n^{2} times. Namely, it get executed for each ordered pair (i, j), ranging from $(0,0)$ to ($n-1, n-1$). This is the portion that dominates the code, so this function runs in $O\left(n^{2}\right)$ time.
6)

```
int function6(int A[], int B[], int n) {
    int i=0,j=0;
    while (i < n) {
        while (j < n && A[i] > B[j]) j++;
        i++;
    }
    return j;
}
```


Solution

This one's tricky! On initial observation, we might think that we have two nested loops that could each run n times. But, on closer inspection, we see that j can only be incremented n times and i can only be incremented n times and each loop iteration must have one or the other increment. Thus, at most, 2 n steps can run before both loops exit. Thus, the run time is $\mathrm{O}(\mathrm{n})$.

7)

```
int function4(int A[], int B[], int n) {
    int i=0,j;
    while (i < n) {
        j=0;
        while (j < n && A[i] > B[j]) j++;
        i++;
    }
    return j;
}
```


Solution

The key difference here is that j is reset to 0 each time, so that inner loop really can run n times every single time. This changes our run-time to $O\left(n^{2}\right)$, since that $j++$ statement can run $n \times n=n^{2}$ times.

8)

```
void function8(int n) {
    while (n > 0) {
        printf("%d\n", n);
        n = n/2;
    }
}
```


Solution

Each loop iteration, n is divided by 2 and we stop the step after $\mathrm{n}=1$ (because of integer division). After k loop iterations, the value of n is oldn $/ 2^{\mathrm{k}}$, where oldn represents the original value of n. Thus, we must have $n / 2^{k}=1$. Our goal is to find k, the number of iterations this code runs. Multiplying, we get $2^{k}=n$. solving, by definition of log, we have $k=\log _{2} n$. Thus, the runtime is $\mathrm{O}(\lg n)$.
9)

```
int function8(int n) {
    int i,j;
    for (i=0; i<n; i++)
        for (j=0; j<n; j++)
                if (j == 1)
                break;
    return j;
}
```

Solution
The j loop never runs more than twice for each value of I , because it gets stopped at $\mathrm{j}=1$. Thus, the total number of times it runs is at most 2 x n. Thus, the function runs in $\mathrm{O}(\mathrm{n})$ time.

