Computer Science I – Summer 2011 Recitation #4: Algorithm Analysis (Solutions)

1)For an $O(n^3)$ algorithm, one data set with n = 3 takes 54 seconds. How long will it take for a data set with n = 5?

Solution

Let T(n) be the function for the run time of the algorithm. Then, $T(n) = cn^3$ for some constant c.

$$T(3) = c3^3 = 54$$

27c = 54, so c = 2

 $T(5) = c5^3 = 2(125) = 250$ seconds.

2)For an $O(2^n)$ algorithm, a friend tells you that it took 17 seconds to run on her data set on a $O(2^n)$ algorithm. You run the same program, on the same machine, and your data set with n = 7 takes 68 seconds. What size was her data set?

Solution

Let T(n) be the function for the run time of the algorithm. Then, $T(n) = c2^n$ for some constant c.

 $T(7) = c2^7 = 68$ 128c = 68, so c = 68/128 = 17/32.

 $T(n) = c2^n = 17(2^n)/32 = 17$, so $2^n = 32$ and n = 5.

3)For an $O(N^k)$ algorithm, where k is a positive integer, an instance of size M takes 32 seconds to run. Suppose you run an instance of size 2M and find that it takes 512 seconds to run. What is the value of k?

Solution

Let T(n) be the function for the run time of the algorithm. Then, $T(n) = cn^k$ for some constant c.

 $T(m) = cm^{k} = 32$ $T(2m) = c(2m)^{k} = c2^{k}m^{k} = 512, \text{ but since } cm^{k} = 32, \text{ substituting, we have:}$ $32(2^{k}) = 512$ $2^{k} = 16$ k = 4 4) Assume that an $O(\log_2 N)$ algorithm runs for 10 milliseconds when the input size (*N*) is 32. What is input size makes the algorithm run for 14 milliseconds?

Solution

Let T(n) be the function for the run time of the algorithm. Then, $T(n) = clog_2n$ for some constant c.

 $T(32) = clog_2 32 = 10$ 5c = 10, so c = 2

 $T(n) = 2\log_2 n = 14$, so $\log_2 n = 7$ and $n = 2^7 = 128$.

5)

```
int function5(int A[], int B[], int n) {
    int i, j, sum = 0;
    for (i=0; i<n; i++)
        for (j=0; j<n; j++)
            if (A[i] == B[j])
                sum++;
    return sum;
}</pre>
```

Solution

The if statement gets executed n^2 times. Namely, it get executed for each ordered pair (i,j), ranging from (0,0) to (n-1,n-1). This is the portion that dominates the code, so this function runs in $O(n^2)$ time.

6)

```
int function6(int A[], int B[], int n) {
    int i=0,j=0;
    while (i < n) {
        while (j < n && A[i] > B[j]) j++;
        i++;
     }
    return j;
}
```

Solution

This one's tricky! On initial observation, we might think that we have two nested loops that could each run n times. But, on closer inspection, we see that j can only be incremented n times and i can only be incremented n times and each loop iteration must have one or the other increment. Thus, at most, 2n steps can run before both loops exit. Thus, the run time is O(n).

```
7)
int function4(int A[], int B[], int n) {
    int i=0,j;
    while (i < n) {
        j=0;
        while (j < n && A[i] > B[j]) j++;
        i++;
    }
    return j;
}
```

Solution

The key difference here is that j is reset to 0 each time, so that inner loop really can run n times every single time. This changes our run-time to $O(n^2)$, since that j++ statement can run n x n = n² times.

8)

```
void function8(int n) {
   while (n > 0) {
      printf("%d\n", n);
      n = n/2;
   }
}
```

Solution

Each loop iteration, n is divided by 2 and we stop the step after n = 1 (because of integer division). After k loop iterations, the value of n is $oldn/2^k$, where oldn represents the original value of n. Thus, we must have $n/2^k = 1$. Our goal is to find k, the number of iterations this code runs. Multiplying, we get $2^k = n$. solving, by definition of log, we have $k = log_2n$. Thus, the runtime is $O(\lg n)$.

```
int function8(int n) {
    int i,j;
    for (i=0; i<n; i++)
        for (j=0; j<n; j++)
            if (j == 1)
                break;
    return j;
}</pre>
```

Solution

The j loop never runs more than twice for each value of I, because it gets stopped at j = 1. Thus, the total number of times it runs is at most 2 x n. Thus, the function runs in O(n) time.

9)