

Computer Science I – Summer 2011
Recitation #4: Algorithm Analysis (Solutions)

1)For an O(n3) algorithm, one data set with n = 3 takes 54 seconds. How long will it take for a
data set with n = 5?

Solution
Let T(n) be the function for the run time of the algorithm. Then, T(n) = cn3 for some constant c.

T(3) = c33 = 54
 27c = 54, so c = 2

T(5) = c53 = 2(125) = 250 seconds.

2)For an O(2n) algorithm, a friend tells you that it took 17 seconds to run on her data set on a
O(2n) algorithm. You run the same program, on the same machine, and your data set with n = 7
takes 68 seconds. What size was her data set?

Solution
Let T(n) be the function for the run time of the algorithm. Then, T(n) = c2n for some constant c.

T(7) = c27 = 68
 128c = 68, so c = 68/128 = 17/32.

T(n) = c2n = 17(2n)/32 = 17, so 2n = 32 and n = 5.

3)For an O(Nk) algorithm, where k is a positive integer, an instance of size M takes 32 seconds
to run. Suppose you run an instance of size 2M and find that it takes 512 seconds to run. What is
the value of k?

Solution
Let T(n) be the function for the run time of the algorithm. Then, T(n) = cnk for some constant c.

T(m) = cmk = 32

T(2m) = c(2m)k = c2kmk = 512, but since cmk = 32, substituting, we have:
 32(2k) = 512
 2k = 16
 k = 4

4) Assume that an O(log2N) algorithm runs for 10 milliseconds when the input size (N) is 32.
What is input size makes the algorithm run for 14 milliseconds?

Solution
Let T(n) be the function for the run time of the algorithm. Then, T(n) = clog2n for some constant
c.

T(32) = clog232 = 10
 5c = 10, so c = 2

T(n) = 2log2n = 14, so log2n = 7 and n = 27 = 128.

5)

int function5(int A[], int B[], int n) {

 int i, j, sum = 0;
 for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 if (A[i] == B[j])
 sum++;
 return sum;
}

Solution
The if statement gets executed n2 times. Namely, it get executed for each ordered pair (i,j),
ranging from (0,0) to (n-1,n-1). This is the portion that dominates the code, so this function runs
in O(n2) time.

6)

int function6(int A[], int B[], int n) {
 int i=0,j=0;

 while (i < n) {
 while (j < n && A[i] > B[j]) j++;
 i++;
 }
 return j;
}

Solution
This one’s tricky! On initial observation, we might think that we have two nested loops that
could each run n times. But, on closer inspection, we see that j can only be incremented n times
and i can only be incremented n times and each loop iteration must have one or the other
increment. Thus, at most, 2n steps can run before both loops exit. Thus, the run time is O(n).

7)

int function4(int A[], int B[], int n) {
 int i=0,j;

 while (i < n) {
 j=0;
 while (j < n && A[i] > B[j]) j++;
 i++;
 }
 return j;
}

Solution
The key difference here is that j is reset to 0 each time, so that inner loop really can run n times
every single time. This changes our run-time to O(n2), since that j++ statement can run n x n = n2
times.

8)

void function8(int n) {

 while (n > 0) {
 printf(“%d\n”, n);
 n = n/2;
 }
}

Solution
Each loop iteration, n is divided by 2 and we stop the step after n = 1 (because of integer
division). After k loop iterations, the value of n is oldn/2k, where oldn represents the original
value of n. Thus, we must have n/2k = 1. Our goal is to find k, the number of iterations this code
runs. Multiplying, we get 2k = n. solving, by definition of log, we have k = log2n. Thus, the run-
time is O(lg n).

9)

int function8(int n) {
 int i,j;
 for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 if (j == 1)
 break;
 return j;
}

Solution
The j loop never runs more than twice for each value of I, because it gets stopped at j = 1. Thus,
the total number of times it runs is at most 2 x n. Thus, the function runs in O(n) time.

