
Computer Science Department
University of Central Florida

Line by Line Parsing in C

COP 3502 Recitation Session

Line by Line Parsing in C page 2

Parsing

 Typical parsing in C:
 We read input from keyboard and files as

individual tokens separated by white space
 scanf and fscanf are used for this

 They read successive tokens from the input
 They read until white space is encountered and then it stops
 The next call of scanf picks up from there and reads the next

token

 When is this parsing method useful?
 If we know how many tokens will be inputed,
 and we know what each token represents

 integer, float, string, etc.

Line by Line Parsing in C page 3

Parsing

 Typical parsing in C:
 But what if we don’t know how many tokens we

will read in?
 Say it is a list of Math classes for Spring 2010

 MA 245 MA 318 MA412 …

 Maybe the list has 10 classes, or 20 classes, or more

 How would we go about reading this in?

Line by Line Parsing in C page 4

Parsing

 Typical input files:
 In these types of files, spaces are usually part of

the input
 Such as the space between a first and last name

 Tabs and newlines are usually the delimiters
 Stuff that separates the data

 Standard processing is to read one entire line at a
time
 Which could have several pieces of information
 Then use a “string tokenizer” to parse out the different

pieces of data in the line.

Line by Line Parsing in C page 5

Parsing

 How do we make this happen:
 Start with fgets function:

 Allows us to read in an entire line at once
 Meaning, until the next newline

 char *fgets(char *restrict s, int n, FILE *restrict stream);
 The first parameter represents the string into which you want to

read in the line from the file.
 The second parameter represents the maximum number of

characters you want to read in. (If the line is longer, n characters
are read, if the line is shorter, then the whole line is read.)

 The third parameter is a pointer to the file from which you want to
read.

 The function ALSO returns a pointer to the beginning memory
address of the character array into which the line was read.

Line by Line Parsing in C page 6

Parsing

 How do we make this happen:
 What do you do with this newly read line:

 If there is only one item per line, fgets stores that item in
the designated character array
 You then just continue with the program

 But often files have several pieces of information per line
 Ex: Joe Smith, Computer Science, Junior, 3.75
 So we need to separate out each piece from the newly read line
 But how?

 Use a string tokenizer function…

Line by Line Parsing in C page 7

Parsing

 strtok:
 In C, the string tokenizer function is strtok:

 This is a built-in function that we can call

 The 1st call sets up the string tokenizer
 You tell the function which string to tokenize,
 and which items work as delimiters (comma, tab, etc)

 Example:
 We read line into an array called line and the delimiters

are commas
 Here’s how you would call the function:

 strtok(line, “,”);
 At the end of this call, “line” will just store a string that represents

the first token of the original contents

Line by Line Parsing in C page 8

Parsing

 strtok:
 To access the remaining tokens:

 Call the strtok function again, BUT now with a new first
parameter
 Call strtok with NULL as the first parameter and use the same

delimiters as in the original call

 Also, this time, the function will returns a pointer to the
beginning of the desired token (the next token)
 So we must store this pointer.

 Ex:
char *p;
p = strtok(NULL, “,”);

Line by Line Parsing in C page 9

Parsing

 strtok:
 To access the remaining tokens:

 You continue making these strtok function calls until
there are no more tokens in the line

 Either you know the number of tokens in the line and
simply use a for loop

 Or, you can check each time to see if the pointer p is
NULL or not.
 If p is NULL, then the function did not return a pointer, meaning

there were no more tokens in the string tokenizer

Line by Line Parsing in C page 10

Parsing

 Additional Information:
 The function strtok returns a VOID pointer
 And…your point is…
 The point is that this pointer needs to be cast to a

char pointer
 More accurate example:

char *p;
p = (char*)strtok(NULL, “,”);

Line by Line Parsing in C page 11

Parsing

 Example: #include <stdio.h>
#include <string.h>

int main(void) {
FILE *fp; // file pointer
char line[80];
char *token;
char *delimiters = " ,\t\n"; // our delimiters
char *fn = "data.txt"; // file name
fp = fopen(fn,"r");

if (!fp) {
printf("error opening \"%s\" for reading\n",fn);
return -1;

}

fgets(line, 80, fp); // grabs the first line

while (!feof(fp)) { // checks to make sure the line is not the end of file
printf("next line\n");
token = (char*)strtok(line, delimiters); // 1st call
while (token != NULL) {

printf("\tnext token = %s\n",token);
token = (char*)strtok(NULL, delimiters); // repeated call

}
fgets(line, 80, fp); // grabs additional lines

}
fclose(fp);
return 0;

}

Line by Line Parsing in C page 12

Parsing

 Example:
So if this was your input:

asdf qwer 12345
xyz p q r
() [] !!!

Your output would be:

next line
next token = asdf
next token = qwer
next token = 12345

next line
next token = xyz
next token = p
next token = q
next token = r

next line
next token = ()
next token = []
next token = !!!

Line by Line Parsing in C page 13

Parsing

 Other little tidbits:
 The strtok() function modifies the contents of the

original string buffer.
 Meaning, you will not have access to the original string

once you start tokenizing it.
 So if you need to keep an original copy of the string, you

must make this copy yourself using strcpy().

Line by Line Parsing in C page 14

Parsing

 Other little tidbits:
 When you use scanf, you do two things:

 You read in the data till the next white space,
 AND the data is then parsed accordingly

 Saved as an int if you used %d, for example

 Similarly, when you tokenize, you must parse the
data properly.
 atoi() and atof() are two C functions defined in the

standard library for this purpose
 atoi -> ascii-to-int
 atof -> ascii-to-float

Line by Line Parsing in C page 15

Parsing

 Other little tidbits:
Example:

char *s = “123”;
int x = atoi(s);

Example:
char *t = “3.14159”;
double y = atof(t);

*Note that in spite of its name atof() returns a
double value.

Computer Science Department
University of Central Florida

Line by Line Parsing in C

COP 3502 Recitation Session

	Line by Line Parsing in C
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Line by Line Parsing in C

