

Computer Science I – Summer 2011
Recitation #12: Hash Tables – Solutions

1) Consider a hash table that uses the linear probing technique with the following hash
function f(x) = (5x+4)%11. (The hash table is of size 11.) If we insert the values 3, 9, 2,
1, 14, 6 and 25 into the table, in that order, show where these values would end up in the
table?

index 0 1 2 3 4 5 6 7 8 9 10
value 25 6 2 9 3 1 14

2) Do the same question as above, but this time use the quadratic probing strategy.

index 0 1 2 3 4 5 6 7 8 9 10
value 14 6 2 9 25 3 1

3) Do the question above, but draw a picture of what the hash table would look like if
linear chaining hashing was used.

Index
0:
1: 6
2:
3: 2
4:
5: 9
6:
7:
8: 25 ->14 ->3
9: 1
10:

4) Edit the code in htablelinear.c so that quadratic probing is the searching strategy used.
Also, edit this code so that it uses a dynamically sized array instead of a statically sized
one. If you have extra time, use this code to read in a whole dictionary from a file and
count how many places have to be checked on average before a word is found or
determined to not be in the dictionary.

Changes are denoted in bold and underlined below.

// Pre-condition: h points to a valid hash table that IS
// not yet half full.
// Post-condition: word will be inserted into the table h.
void insertTable(struct htable *h, char word[]) {

 int hashval;
 hashval = hashvalue(word);

 // Here's the quadratic probing part.
 int i = 1;
 while (strcmp(h->entries[hashval], "") != 0) {
 hashval = (hashval+i)%TABLE_SIZE;
 i *= 2;
 }
 strcpy(h->entries[hashval], word);
}

// Pre-condition: h points to a valid hash table that is no
// more than half full.
// Post-condition: 1 will be returned iff word is stored in
the table pointed to
// by h. Otherwise, 0 is returned.
int searchTable(struct htable *h, char word[]) {

 int hashval;
 hashval = hashvalue(word);

 // See what comes first, the word or a blank spot.
 int i = 1;
 while (strcmp(h->entries[hashval], "") != 0 &&
 strcmp(h->entries[hashval], word) != 0) {
 hashval = (hashval+i)%TABLE_SIZE;
 i *= 2;
 }

 // The word was in the table.
 if (strcmp(h->entries[hashval], word) == 0)

 return 1;

 // It wasn't.
 return 0;

}

// Pre-condition: h points to a valid hash table that is no
// more than half full.
// Post-condition: deletes word from the table pointed to
by h, if word is
// stored here. If not, no change is made
to the table pointed
// to by h.
void deleteTable(struct htable *h, char word[]) {

 int hashval;
 hashval = hashvalue(word);

 // See what comes first, the word or a blank spot.
 int i = 1;
 while (strcmp(h->entries[hashval], "") != 0 &&
 strcmp(h->entries[hashval], word) != 0) {
 hashval = (hashval+i)%TABLE_SIZE;
 i *= 2;
 }

 // Reset the word to be the empty string.
 if (strcmp(h->entries[hashval], word) == 0)
 strcpy(h->entries[hashval],"");

 // If we get here, the word wasn't in the table, so
nothing is done.
}

