
2016 Spring COP 3502 Final Exam Solutions 

 

Date: 4/28/2016 

 

1) (10 pts) Consider implementing a hash table that stores integers, using the linear probing 

strategy. Assume that the hash table uses the hash function, f, defined below and that size is 23. 

Show the contents of the table after the following insertions have been made, in the order given: 

4362, 999235, 7283624, 8123456, 77, 11111111, 52, 123, 7999999 and 12345675. 

 
int f(int n, int size) { 

    int res = 0; 

    while (n > 0) { 

        res = (res + (n%10))%size; 

        n = n/10; 

    } 

    return res; 

} 

 

index 0 1 2 3 4 5 6 7 8 9 10 11 

value       8123456 52 11111111 7283624 123 12345675 

 

index 12 13 14 15 16 17 18 19 20 21 22 

value   999235 4362 77 7999999      

 

Note: The key here is to realize that the function just returns the sum of the digits mod size. 

If you don't realize that, this question takes 20 minutes instead of 3 and it takes away time 

from the rest of the exam. This was done by design, to reward the students who were able 

to look at the code and translate what it does into English as opposed to a literal translation 

line by line. 

 

Grading: 1 pt per number. To get the point, the correct number must be in the correct slot. 

  



2) (10 pts) Consider inserting the following items into a minimum heap in the following order: 

18, 8, 16, 4, 3, 12, 17, 2, 22, and 7. Show the state of the heap (drawn as a complete binary tree) 

after the completion of each insertion. Draw a box around each of your answers. 

 

Solution 

 

1st insert:  2nd insert:  3rd insert:   4th insert: 

 

18       8 (perc up 1)      8      4 (perc up twice) 

               /                                    /     \    /    \ 

             18             18      16            8     16 

                            / 

                          18 

 

 

5th insert:    6th insert:    7th insert: 

 

         3 (perc up twice)        3        3  

       /    \                                                  /     \                /      \ 

     4     16                                             4      12 (perc up 1)                          4        12 

   /   \                                                   /   \    /                                              /    \     /    \ 

18    8            18   8 16                                           18    8  16  17 

 

 

8th insert:    9th insert:             10th insert: 

 

            2 (perc up 3 times)          2         2 

        /       \         /       \                /      \ 

      3        12       3       12              3       12 

    /    \     /    \     /   \      /   \                       /   \     /   \ 

  4     8  16   17   4   8  16   17          4    7  16   17 

 /               /  \                                                   / \   / 

18            18 22                 18 22 8 

 

Grading: 1 pt per tree, give point for a tree if the individual insert is correct based on 

previous insert. 

 

 



  

3) (12 pts) It was mentioned in class that a Bubble Sort could be implemented recursively, since 

after one iteration of a Bubble Sort on n elements, the maximum value is correctly sorted, so 

what remains is an array of size n-1. Fill in the function shown below so that it implements a 

recursive Bubble Sort. You may (and should) call the swap function that is provided below. 

 
void swap(int* ptrA, int* ptrB) { 

    int temp = *ptrA; 

    *ptrA = *ptrB; 

    *ptrB = temp; 

} 

 
void bubbleSortRec(int* array, int n) { 

 

    if ( n<=1 ) return;     // 1 pt n==1 ok 

 

    int i; 

    for (i = 0 ; i < n-1 ; i++) {   // 1 pt (can Δ) 
 

        if (array[i] > array[i+1])   // 3 pts (can Δ) 
 

            swap(&array[i], &array[i+1]); // 4 pts (can Δ) 
    } 

 

    bubbleSortRec(array, n-1);   // 3 pts 

} 

 

 

4) (8 pts) Complete the function below so that takes in an integer n and returns the number of 

bits set to 1 in the binary representation of n. In order to get full credit, please use bitwise 

operators.  

 
int bitCount(int n) { 

 

    int i, res = 0; 

 

    for (i=0; (1<<i) <= n ; i++)  // 4 pts (can Δ) 
 

        if ( (n & (1<<i)) != 0)  // 4 pts (can Δ) 
            res++; 

 

    return res; 

} 

 

  



5) (15 pts) A new company, iTraits, has designed a personality test so that people can identify 

others like them and unlike them. They use a 20 question survey of yes/no questions to 

characterize each person in their database. Each person's personality can be stored efficiently in a 

computer program as an integer, where the ith bit is set to 0 if the answer to question i is no, and 

the ith bit is set to 1 if the answer to question i is yes. (The questions are numbered 0 to 19.) For 

example, if a person's answers to questions 0 through 3 were yes and questions 4 through 19 

were 0, the value 15 = 20 + 21 + 22 + 23 would be stored for their personality. 

 

We define someone's arch-nemesis as the person with whom they differ on the most number of 

traits. Complete the function below so that it takes in the value corresponding to a particular 

individual's personality (personA), the array of values (otherPeople) representing personalities of 

each other person in a database, and the length of that array (length), and returns the index into 

otherPeople of the arch-nemesis of personA. If there are multiple arch-nemesi, you may return 

the index of any one of them. You may call the bitCount function from question 4 and assume 

that it works properly. In order to get full credit, please use bitwise operators.  

 
int getArchNemisis(int personA, int* otherPeople, int length) { 

 

    int i, res = -1, diff = 0; 

 

    for (i=0; i<length; i++) { 

 

        if (bitCount(personA^otherPeople[i]) > diff) { 

 

            diff = bitCount(personA^otherPeople[i]); 

 

            res = i; 

        } 

    } 

 

    return res; 

} 

 

Grading: Many ways to write this. Here is criteria - 

 

1 pt for variable declarations and initializations 

3 pts for length loop (this is necessary) 

4 pts for appropriate xor or alternative operation 

1 pt for calling bitcount 

3 pts for seeing if this choice is the best so far 

2 pts for updating our result if necessary 

1 pt for returning 

 

 

 

 

 



6) (15 pts) Consider a binary search tree of integers where each node stores the number of nodes 

in its subtree. The struct for such a tree is as follows: 

 
struct bintreenode { 

    int data; 

    int numNodes; 

    struct bintreenode* left; 

    struct bintreenode* right; 

}; 

 

Write a function that takes in a pointer to a struct bintreenode root, and an integer k, 

and returns the kth smallest integer in the tree rooted at root. (Hint: make your function recursive. 

If you look at how many values are in the left subtree, it will tell you whether or not the kth 

smallest value is in the left subtree, the right subtree or the root.) 

 
// Pre-conditions: root != NULL and 1 <= k <= root->numNodes. 

int findKthSmallest(struct bintreenode* root, int k) { 

 

 

    int leftSide = 0;    // 3 pts assign leftSide 

    if (root->left != NULL)    // -2 if didn't catch 

        leftSide = root->left->numNodes;// NULL case. 

 

    if (k <= leftSide)     // 4 pts this case 

        return findKthSmallest(root->left, k); 

 

    else if (k == leftSide+1)    // 4 pts this case 

        return root->data; 

    else        // 4 pts this case 

        return findKthSmallest(root->right, k-leftSide-1); 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7) (12 pts) Using the iteration technique, find a Big-Oh bound for the following recurrence 

relation, in terms of n: 

𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 𝑛2, for n > 1 

𝑇(1) = 1 
 

Solution 

𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 𝑛2 

𝑇(𝑛) = 2[2𝑇 (
𝑛

4
) + (

𝑛

2
)

2

] + 𝑛2 

𝑇(𝑛) = 4𝑇 (
𝑛

4
) + 2 ×

𝑛2

4
+ 𝑛2 

𝑇(𝑛) = 4𝑇 (
𝑛

4
) +

3𝑛2

2
 

𝑇(𝑛) = 4[2𝑇 (
𝑛

8
) + (

𝑛

4
)2] +

3𝑛2

2
 

𝑇(𝑛) = 8𝑇 (
𝑛

8
) + 4 ×

𝑛2

16
+

3𝑛2

2
 

𝑇(𝑛) = 8𝑇 (
𝑛

8
) +

7𝑛2

4
 

 

In general, after k steps, we see that our formula will iterate to: 

𝑇(𝑛) = 2𝑘𝑇 (
𝑛

2𝑘
) +

(2𝑘 − 1)𝑛2

2𝑘−1
 

 

Plug in 
𝑛

2𝑘 = 1, so let 𝑛 = 2𝑘 and 𝑘 = 𝑙𝑜𝑔2𝑛 to obtain: 

𝑇(𝑛) = 𝑛𝑇(1) +
(𝑛 − 1)𝑛2

𝑛
2⁄

 

𝑇(𝑛) = 𝑛 + 2𝑛(𝑛 − 1) 

𝑇(𝑛) = 2𝑛2 − 𝑛 = 𝑂(𝑛2) 

 

Grading: 2 pts for step 2 of the recurrence (4T(n/4) + 3/2 n2), 2 pts for step 3 of the 

recurrence (8T(n/8) + 7/4 n2), 3 pts for the guess, 3 pts for finding what to plug in for the 

guess, 2 pts for the final Big-Oh answer after plugging in. 

 

 

 

 

 

 

 

 

 

 



8) (7 pts) An O(n2) algorithm takes half a second to run on an input of size 10,000. Roughly, how 

long will it take to run on an input of size 50,000, in seconds? 

Solution 

Let T(n) be the run time of the algorithm. Then T(n) = cn2. It follows that: 

 

𝑻(𝟏𝟎𝟎𝟎𝟎) = 𝒄(𝟏𝟎𝟎𝟎𝟎)𝟐 =. 𝟓 𝒔𝒆𝒄 

𝒄 =. 𝟓 × 𝟏𝟎−𝟖𝒔𝒆𝒄 

 

𝑻(𝟓𝟎𝟎𝟎𝟎) = 𝒄(𝟓𝟎𝟎𝟎𝟎)𝟐 =. 𝟓 ×
𝟐𝟓 × 𝟏𝟎𝟖

𝟏𝟎𝟖
= 𝟏𝟐. 𝟓 𝒔𝒆𝒄𝒐𝒏𝒅𝒔 

 

12.5 seconds 

 

Grading: 3 pts solving for c, 2 pts to substitute c and 50,000. 2 pts to simplify answer in 

seconds. 

 

 

 

 

 

9) (7 pts) What is the base 10 value of 5789 equal when converted to base 4? 

 

Solution 

 

4 | 5789 

4 | 1447  R 1 

4 |   361  R 3 

4 |     90  R 1 

4 |     22  R 2 

4 |       5  R 2 

4 |       1  R 1 

4 |       0  R 1 

 

 

11221314 (Grading 1 pt per digit going backwards, max 2 pts for any other algorithm) 

 

 

 

 

 

 

10) (4 pts) What programming language is named in honor of mathematician Blaise Pascal?  

 

Pascal (4 pts give to all) 


