
Practice Multiple Choice Exam: Computer Science I (Stacks, Queues)

The following code implements a stack using an array. Several lines of the implementation have

been omitted. Questions 1 - 5 will be about these missing lines.

#define SIZE 10

#define EMPTY -1

struct stack {

 int items[SIZE];

 int top;

};

// Initializes an empty stack.

void initialize(struct stack* stackPtr) {

 stackPtr->top = 0;

}

// Attempts to push value onto the stack pointed to by stackPtr. Returns

// 1 if the push was successful, 0 otherwise.

int push(struct stack* stackPtr, int value) {

 if (full(stackPtr))

 return 0;

 stackPtr->items[/*** Q1 ***/] = value;

 /*** Q2 ***/

 return 1;

}

// Returns 1 iff the stack pointed to by stackPtr is full, 0 otherwise.

int full(struct stack* stackPtr) {

 return /*** Q3 ***/;

}

// If the stack is non-empty, the top of the stack is returned. Otherwise

// -1 (EMPTY) is returned.

int top(struct stack* stackPtr) {

 if (/*** Q4 ***/)

 return EMPTY;

 return /*** Q5 ***/;

}

The following code implements a queue using a linked list. Several lines of the implementation

have been omitted. Questions 6 - 10 will be about these missing lines.

#define EMPTY -1

struct node {

 int data;

 struct node* next;

};

struct queue {

 struct node* front;

 struct node* back;

};

void init(struct queue* qPtr) {

 qPtr->front = NULL;

 qPtr->back = NULL;

}

// Pre-condition: qPtr points to a valid struct queue and val is the value to

// enqueue into the queue pointed to by qPtr.

// Post-condition: If the operation is successful, 1 will be returned,

// otherwise no change will be made to the queue and 0 will be returned.

int enqueue(struct queue* qPtr, int val) {

 struct node* temp = (struct node*)malloc(sizeof(struct node));

 if (temp != NULL) {

 temp->data = val;

 temp->next = NULL;

 if (qPtr->back != NULL)

 /*** Q6 ***/

 /*** Q7 ***/

 if (qPtr->front == NULL)

 qPtr->front = /*** Q8 ***/;

 /*** Q9 ***/

 }

 else

 /*** Q10 ***/

}

11) What is the value of the following postfix expression?

 5 8 * 9 - 3 - 2 2 + /

12) What is the correct conversion of the following infix expression into postfix?

 (4 + 5) / (8 - (2 + 3 * (5 - 4)))

13) Consider implementing a queue with a linked list, with only a pointer to the front of the queue.

Which of the functions, in this implementation, would still have an O(1) run time? (Answer with

a name that is appropriate based on the convention for queue functions.)

14) What is the following is the preorder traversal of the following binary tree?

 20

 / \

 47 25

 / \ \

 8 18 14

 \ / \ / \

 1 13 31 15 37

 \

 32

15) Which line of code should replace /*** insert code ***/ in the function shown below, if the

goal of the function is to return the number of nodes in the binary tree pointed to by root? Note:

the node that root directly points to should be counted as well as all the ones “underneath” that

one.

struct treeNode {

 int data;

 treeNode* left;

 treeNode* right;

};

int max(int a, int b) {

 if (a > b) return a;

 return b;

}

int countNodes(struct treeNode* root) {

 if (root == NULL) return 0;

 /*** insert code ***/

}

16) For a tree with n nodes, what is the average case run-time of the completed function shown

in the previous question?

17) What is the output of the function call f(root) where f is the function shown below and root is

a pointer to the root of the tree shown below? (Note: use the struct defintion from the two previous

questions.)

void f(struct treeNode* root) {

 if (root == NULL) return 0;

 if (root->left == NULL && root->right == NULL)

 return root->data;

 int left = f(root->left);

 int right = f(root->right);

 return left + right;

}

 root_______
 |

 30

 / \

 20 15

 / \ /

 5 25 17

 / / \

 8 80 40

18) The depth of a node in a binary tree is the distance of that node from the root. Write a recursive

function that takes in a pointer to the root of a binary tree and returns the sum of the depths of the

nodes of the tree. (For example, a complete binary tree of 7 nodes has 1 node with depth 0, 2 nodes

with depth 1 and 4 nodes with depth 2, for a sum of depths of nodes of 0 + 2(1) + 4(2) = 10. Use

the struct definition and function prototype given below. You may also assume that curDepth in

sumDepthRec represents the depth of root within the whole binary tree.

typedef struct treenode {

 int data;

 struct treenode *left;

 struct treenode *right;

} treenode;

double sumDepth(treenode* root) {

 return sumDepthRec(root, 0);

}

double sumDepthRec(treenode* root, int curDepth) {

 // Fill in

}

