
Computer Science Department
University of Central Florida

Recursion

COP 3502 – Computer Science I

Recursion page 2© Jonathan Cazalas

Recursion

 What is Recursion?
 Powerful, problem-solving strategy

 “yeah, that tells us a whole lot”
 </sacrasm_off>

 In plain English:
 Recursion: the process a procedure goes through,

when one of the steps of the procedure involves
rerunning the entire procedure
 Example: say that some procedure has 4 steps
 The 3rd step instructs you to run the entire procedure again
 Each time you get to the third step, you have to start anew
 This goes on, potentially, infinitely
 And this is an example of Recursion

Recursion page 3© Jonathan Cazalas

Recursion:
Ex of Thinking Recursively
Strategy for processing nested dolls:

INITIATE FUNCTION “Open All Dolls”
if there is only one doll

(1) you’re done! Play with the doll.
else

(1) open the outer doll
(2) Process the inner nest in the same way

This part is the “recursion”

Recursion page 4© Jonathan Cazalas

Recursion

 What is Recursion?
 From the programming perspective:

 A recursive function is one that contains a call to its
own self

 Example: we know that we are allowed to call function
B from within function A

 Also, you are allowed to call function A from within
function A!
 This is recursion

 Note:
 This could go on for infinity as function A keeps calling

function A
 So we must have a way to exit the function!

Recursion page 5© Jonathan Cazalas

Recursion Example w/o terminate

#include <stdio.h>

void print(); // This is just a cheesy function that prints something

int main() {
print(); // Here we call the cheesy function
system("PAUSE");

return 0;
}

void print() {

printf(“Example of recursion WITHOUT a stopping case.\n");
print(); // And here is the recursive function call

}

 Example of recursion without a terminating
condition. Just keeps going and going and…

Recursion page 6© Jonathan Cazalas

Recursion

 What is Recursion?
 From the programming perspective:
 Recursion solves large problems by reducing

them to smaller problems of the same form
 Again, recursion is a function that invokes itself

 Basically splits a problem into one or more SIMPLER
versions of itself

 And we must have a way of stopping the recursion
 So the function must have some sort of calls or

conditional statements that can actually terminate the
function

Recursion page 7© Jonathan Cazalas

Recursion

 Programming example:
 Let us write a program that counts down from 10

and then prints BLAST OFF!
 How would we do this iteratively?

 This program prints:
 10! 9! 8! 7! 6! 5! 4! 3! 2! 1!

BLAST OFF!

#include <stdio.h>

int main(void) {
int i;
for (i = 10; i > 0; --i)

printf(“%d! ”, i);
printf(“\nBLAST OFF!\n”);

}

Recursion page 8© Jonathan Cazalas

Recursion

 How do we do this recursively?
 We need a function that we will call

 And this function will then call itself
 until the stopping case

 Once again, this program prints:
 10! 9! 8! 7! 6! 5! 4! 3! 2! 1!

BLAST OFF!

#include <stdio.h>

void count_down(int n);

int main(void) {
count_down(10);
return 0;

}

Here’s the Count Down Function
void count_down(int n){

if (n>0) {
printf(“%d! ”, i);
count_down(n-1);

}
else

printf(“\nBLAST OFF!\n”);
}

Recursion page 9© Jonathan Cazalas

Recursion

 Program Details:
 So what’s going on here in this program?

 The first line of the main program calls the function
count_down, with 10 as the input
 Think of this as starting a new “mini” program

 When count_down(10) runs, what happens?
 Execution flows into the first IF statement

 Cause 10 is surely greater than 0.
 After printing “10!”, the function count_down then CALLS

ITSELF with count_down(9)
 Think of this as starting another “mini” program

 Again, execution flows into the first IF statement
 Cause 9 is surely greater than 0.

 This new, mini program then prints “9!” and calls itself with
count_down(8)

Recursion page 10© Jonathan Cazalas

Recursion

 Program Details:
 So what’s going on here in this program?

 This continues until we get to the mini program called
count_down(1)
 This mini program will print “1!”

 Cuz, again, 1 is greater than 0
 And then it calls count_down(0)

 What happens now?
 Execution does NOT flow into the IF statement

 0 is NOT greater than 0
 So execution goes into the ELSE statement

 BLAST OFF! is printed
 This mini program has finished
 AND all the other function calls have finished
 Control returns to the main program and the program ends.

Recursion page 11© Jonathan Cazalas

Recursion

 Here’s what’s going on…in pictures

 The Output:
 10!

BLAST OFF!

#include <stdio.h>

void count_down(int n);

int main(void) {
count_down(10);
return 0;

}

count_down(10)
Prints 10!
calls count_down(9)count_down(9)

Prints 9!
calls count_down(8)count_down(8)

Prints 8!
calls count_down(7)count_down(7)

Prints 7!
calls count_down(6)count_down(6)

Prints 6!
calls count_down(5)count_down(5)

Prints 5!
calls count_down(4)count_down(4)

Prints 4!
calls count_down(3)count_down(3)

Prints 3!
calls count_down(2)count_down(2)

Prints 2!
calls count_down(1)count_down(1)

Prints 1!
calls count_down(0)count_down(0)

Prints BLAST OFF!

9! 8! 7! 6! 5! 4! 3! 2! 1!

Think of this as
your function stack

Recursion page 12© Jonathan Cazalas

Recursion - Factorial

 Count Down program
 Not the most enlightening

 But it gives us an idea of how recursion works
 Let’s look at another example

 Example: Compute Factorial of a Number
 What is a factorial?

 4! = 4 * 3 * 2 * 1 = 24
 In general, we can say:
 n! = n * (n-1) * (n-2) * … * 2 * 1
 Also, 0! = 1

 (just accept it!)

Recursion page 13© Jonathan Cazalas

Recursion - Factorial

 Example: Compute Factorial of a Number
 Typical iterative solution

int fact(int n)
{

int p, j;
p = 1;
for (j=n; j>=1; j--)

p = p* j;
return (p);

}

Straightforward Result:
ex: n=3

p = 1*3 // p = 3
p = 3*2 // p = 6
p = 6*1 // p = 6

Recursion page 14© Jonathan Cazalas

Recursion - Factorial

 Example: Compute Factorial of a Number
 Recursive Solution

 How do we come up with a recursive solution to
this?
 This is really the hardest part

 You MUST figure out how you can think of the
problem in a recursive manner.
 Ask yourself: how can we rewrite this problem so

that it is defined recursively?
 Remember, we said that recursion:
 solves large problems by reducing them to

smaller problems of the same form

Recursion page 15© Jonathan Cazalas

Recursion - Factorial

 Example: Compute Factorial of a Number
 Recursive Solution

 Mathematically, factorial is already defined recursively
 Note that each factorial is related to a factorial of the

next smaller integer
 4! = 4*3*2*1
 Right?
 Another example:
 10! = 10*9*8*7*6*5*4*3*2*1

 10! = 10*

= 4 * (4-1)! = 4 * (3!)

(9!)
This is clear right?
Since 9! clearly is equal to
9*8*7*6*5*4*3*2*1

Recursion page 16© Jonathan Cazalas

Recursion - Factorial

 Example: Compute Factorial of a Number
 Recursive Solution

 Mathematically, factorial is already defined recursively
 Note that each factorial is related to a factorial of the

next smaller integer
 Now we can say, in general, that:
 n! = n * (n-1)!
 But we need something else

 We need a stopping case, or this will just go on and on and on
 NOT good!

 We let 0! = 1
 So in “math terms”, we say

 n! = 1 if n = 0
 n! = n * (n-1)! if n > 0

Recursion page 17© Jonathan Cazalas

Recursion - Factorial

 How do we do this recursively?
 We need a function that we will call

 And this function will then call itself (recursively)
 until the stopping case (n = 0)

 This program prints the result of 10*9*8*7*6*5*4*3*2*1:
 3628800

#include <stdio.h>

int Fact(int n);
int main(void) {

int factorial = Fact(10);
printf(“%d\n”, factorial);
return 0;

}

Here’s the Fact Function
int Fact (int n) {

if (n == 0)
return 1;

else
return (n * fact(n-1));

}

Recursion page 18© Jonathan Cazalas

Recursion - Factorial

 Here’s what’s going on…in pictures
#include <stdio.h>

int Fact(int n);
int main(void) {

int factorial = Fact(10);
printf(“%d\n”, factorial);
return 0;

}

Fact(10)
Returns (10*Fact(9))

Fact(9)
Returns (9*Fact(8))

Fact(8)
Returns (8*Fact(7))

Fact(7)
Returns (7*Fact(6))

Fact(6)
Returns (6*Fact(5))

Fact(5)
Returns (5*Fact(4))

Fact(4)
Returns (4*Fact(3))

Fact(3)
Returns (3*Fact(2))

Fact(2)
Returns (2*Fact(1))

Fact(1)
Returns (1*Fact(0))

Fact(0)
Returns 1

Recursion page 19© Jonathan Cazalas

Recursion - Factorial

 Here’s what’s going on…in pictures

 So now when we return,
 Where do we return to?

 We return to the function that called Fact(0)
 We return the value, 1, into the spot that called Fact(0)

#include <stdio.h>

int Fact(int n);
int main(void) {

int factorial = Fact(10);
printf(“%d\n”, factorial);
return 0;

}

Fact(10)
Returns (10*Fact(9))

Fact(9)
Returns (9*Fact(8))

Fact(8)
Returns (8*Fact(7))

Fact(7)
Returns (7*Fact(6))

Fact(6)
Returns (6*Fact(5))

Fact(5)
Returns (5*Fact(4))

Fact(4)
Returns (4*Fact(3))

Fact(3)
Returns (3*Fact(2))

Fact(2)
Returns (2*Fact(1))

Fact(1)
Returns (1*Fact(0))

Fact(0)
Returns 1

Recursion page 20© Jonathan Cazalas

Recursion - Factorial

 Here’s what’s going on…in pictures

 Now factorial has the value 3,628,800.

#include <stdio.h>

void Fact(int n);
int main(void) {

int factorial = Fact(10);
printf(“%d\n”, factorial);
return 0;

}

Fact(10)
Returns (10*Fact(9))

Fact(9)
Returns (9*Fact(8))

Fact(8)
Returns (8*Fact(7))

Fact(7)
Returns (7*Fact(6))

Fact(6)
Returns (6*Fact(5))

Fact(5)
Returns (5*Fact(4))

Fact(4)
Returns (4*Fact(3))

Fact(3)
Returns (3*Fact(2))

Fact(2)
Returns (2*Fact(1))

Fact(1)
Returns (1*Fact(0))

Fact(0)
Returns 1

Fact(1)
Returns (1*1)

Fact(2)
Returns (2*1)

Fact(3)
Returns (3*2)

Fact(4)
Returns (4*6)

Fact(5)
Returns (5*24)

Fact(6)
Returns (6*120)

Fact(7)
Returns (7*720)

Fact(8)
Returns (8*5040)

Fact(9)
Returns (9*40320)

Fact(10)
Returns (10*362880)

1

1

2

6

24

120

720

5040

40320

362880

3628800

Recursion page 21© Jonathan Cazalas

Brief Interlude: Human Stupidity

Recursion page 22© Jonathan Cazalas

Recursion

 Recursive functions
 Are functions that calls themselves
 Can only solve a base case
 If not base case, the function breaks the

problem into a slightly smaller, slightly simpler,
problem that resembles the original problem and
 Launches a new copy of itself to work on the smaller

problem, slowly converging towards the base case
 When computing a value, often makes a call to itself

inside the return statement
 Eventually the base case gets solved and then that

value works its way back up to solve the whole
problem

Recursion page 23© Jonathan Cazalas

Recursion

 So why use recursion?
 Elegant solution to complex problems

 “To iterate is human, to recurse divine.”
-L. Peter Deutsch

 Yeah, we’re dorks
 Comes with the territory
 Get over it

 Some solutions are naturally recursive
 Sometimes these involve writing less code and

are clearer to read

Recursion page 24© Jonathan Cazalas

Recursion

 On the flipside, why NOT use recursion…
 Every problem that can be solved recursively

can be solved with iteration.
 Recursive calls take up both memory and CPU

time
 Exponential Complexity – calling the Fib function uses

2n function calls.
 Trade off of High Performance vs. Good

Software Engineering.

Recursion page 25© Jonathan Cazalas

Recursion - Fibonacci

 Fibonacci Sequence
 Some programs are just more naturally written recursively

 Fibonacci is one such example
 What is the Fibonacci sequence?

 The first two terms of the sequence are 1
 Each of the following terms is the sum of the two previous terms

 1 1 2 3 5 8 13 21 34 55 89 144 …

 So how can we define this Fibonacci sequence:
 Base (stopping) cases:

fib(1) = 1
fib(2) = 1

 fib(n) = fib(n-1) + fib(n-2), for n > 2
 So, fib(7), referring to the seventh Fibonacci number, which we see from the

sequence above is 13, can be found by adding fib(6) + fib(5).

Recursion page 26© Jonathan Cazalas

Recursion - Fibonacci

 So how do we code this up recursively?
 We need a function that we will call

 And this function will then call itself
 until the stopping cases (n = 1 or n = 2)

 This program prints out the 10th fibonacci number:
 55

#include <stdio.h>

int fib(int n);
int main(void) {

int FibNum= fib(10);
printf(“%d\n”, FibNum);
return 0;

}

Here’s the fib function
int fib(int n) {

if (n <= 2)
return 1;

else
return fib(n-1) + fib(n-2);

}

Recursion page 27© Jonathan Cazalas

Recursion - Fibonacci

 Fibonacci Sequence:
 So what was the point of this example?

 Showed how recursive programming can truly be
easier

 Recursive solutions are often more elegant
 Although not necessarily faster

 And recursive solutions are often the obvious choice
based on the given function definitions

 Now that you semi-understand recursion:
 Check out Google’s search result for recursion:

 www.google.com
 Type in “recursion”
 ya get it???

http://www.google.com/�

Recursion page 28© Jonathan Cazalas

Recursion

WASN’T
THAT

FASCINATING!

Recursion page 29© Jonathan Cazalas

Daily Demotivator

Computer Science Department
University of Central Florida

Recursion

COP 3502 – Computer Science I

	Recursion
	Recursion
	Recursion:�Ex of Thinking Recursively
	Recursion
	Recursion Example w/o terminate
	Recursion
	Recursion
	Recursion
	Recursion
	Recursion
	Recursion
	Recursion - Factorial
	Recursion - Factorial
	Recursion - Factorial
	Recursion - Factorial
	Recursion - Factorial
	Recursion - Factorial
	Recursion - Factorial
	Recursion - Factorial
	Recursion - Factorial
	Brief Interlude: Human Stupidity
	Recursion
	Recursion
	Recursion
	Recursion - Fibonacci
	Recursion - Fibonacci
	Recursion - Fibonacci
	Recursion
	Daily Demotivator
	Recursion

