
Computer Science Department
University of Central Florida

Linked Lists:
Deleting Nodes

COP 3502 – Computer Science I

Linked Lists: Deleting Nodes page 2© Jonathan Cazalas

Linked Lists: Basic Operations

 Operations Performed on Linked Lists
 Several operations can be performed on linked

lists
 Add a new node
 Delete a node
 Search for a node
 Counting nodes
 Modifying nodes
 and more

 We will build functions to perform these
operations

Linked Lists: Deleting Nodes page 3© Jonathan Cazalas

Linked Lists: Deleting Nodes

 General Approach:
 You must search for the node that you want to

delete (remember, we are using sorted lists)
 If found, you must delete the node from the list
 This means that you change the various link

pointers
 The predecessor of the deleted node must point to

the deleted nodes successor
 Finally, the node must be physically deleted

from the heap
 You must free the node

Linked Lists: Deleting Nodes page 4© Jonathan Cazalas

Linked Lists: Deleting Nodes

 General Approach:
 There are 4 deletion scenarios:
1) Delete the first node of a list
2) Delete any middle node of the list

 Not the first node or the last node

3) Delete the last node of the list
4) A special case when we delete the only node in

the list
 Causes the resulting list to become empty

Linked Lists: Deleting Nodes page 5© Jonathan Cazalas

Linked Lists: Deleting Nodes

 4 Cases of Deletion:
1) Delete the first node of a list

6
myList

NULL

The list after deleting the first node

4
myList

NULL

The initial list

6

node to be deleted

Linked Lists: Deleting Nodes page 6© Jonathan Cazalas

Linked Lists: Deleting Nodes

 4 Cases of Deletion:
1) Delete the first node of a list

 Think about how you make this happen:
 myList needs to point to the 2nd node in the list
 So we save the address of the 2nd node into myList
 Where do we get that address:

 It is saved in the “next” of the first node
 So we take that address and save it into myList

4
myList

NULL

The initial list

6

node to be deleted

Linked Lists: Deleting Nodes page 7© Jonathan Cazalas

Linked Lists: Deleting Nodes

 4 Cases of Deletion:
1) Delete the first node of a list

 Think about how you make this happen:
 myList needs to point to the 2nd node in the list
 So we save the address of the 2nd node into myList
 Where do we get that address:

 It is saved in the “next” of the first node
 So we take that address and save it into myList
 Finally, we free the 1st node

4
myList

NULL

The initial list

6

node to be deleted

Linked Lists: Deleting Nodes page 8© Jonathan Cazalas

Linked Lists: Deleting Nodes

 4 Cases of Deletion:
2) Delete any middle node of the list

4
myList

NULL

The initial list

86

node to be deleted

4
myList

NULL

The list after deletion has occurred

8

Linked Lists: Deleting Nodes page 9© Jonathan Cazalas

Linked Lists: Deleting Nodes

 4 Cases of Deletion:
2) Delete any middle node of the list

 Think about how you make this happen:
 Node # 4 (with 4 as data) needs to point to Node # 8
 So we save the address of Node #8 into “next” of Node # 4
 Where do we get the address of Node #8?

 It is saved in the “next” of Node # 6!
 So we take that address and save it to the “next” of Node # 4

4
myList

NULL

The initial list

86

node to be deleted

Linked Lists: Deleting Nodes page 10© Jonathan Cazalas

Linked Lists: Deleting Nodes

 4 Cases of Deletion:
2) Delete any middle node of the list

 Think about how you make this happen:
 Node # 4 (with 4 as data) needs to point to Node # 8
 So we save the address of Node #8 into “next” of Node # 4
 Where do we get the address of Node #8?

 It is saved in the “next” of Node # 6!
 So we take that address and save it to the “next” of Node # 4
 Finally, we free Node # 6

4
myList

NULL

The initial list

86

node to be deleted

Linked Lists: Deleting Nodes page 11© Jonathan Cazalas

Linked Lists: Deleting Nodes

 4 Cases of Deletion:
3) Delete the last node of the list

4
myList

NULL

The initial list

86

node to be deleted

4
myList

NULL

The list after deletion has occurred

6

Linked Lists: Deleting Nodes page 12© Jonathan Cazalas

Linked Lists: Deleting Nodes

 4 Cases of Deletion:
3) Delete the last node of the list

 Think about how you make this happen:
 We simply need to save NULL to the “next” of Node # 6

 This bypasses Node # 8
 Where is NULL currently saved?

 In the “next” of Node # 8
 So take that value (NULL) and save into the “next” of Node #6

4
myList

NULL

The initial list

86

node to be deleted

Linked Lists: Deleting Nodes page 13© Jonathan Cazalas

Linked Lists: Deleting Nodes

 4 Cases of Deletion:
3) Delete the last node of the list

 Think about how you make this happen:
 We simply need to save NULL to the “next” of Node # 6

 This bypasses Node # 8
 Where is NULL currently saved?

 In the “next” of Node # 8
 So take that value (NULL) and save into the “next” of Node #6
 Finally, we free Node # 8

4
myList

NULL

The initial list

86

node to be deleted

Linked Lists: Deleting Nodes page 14© Jonathan Cazalas

Linked Lists: Deleting Nodes

 4 Cases of Deletion:
4) A special case when we delete the only node in

the list

myList
NULL

The list after deleting the only node.

7

myList

NULL

The initial list

This is a special case only in
the sense that the head pointer
value, which is returned to the
function, will be NULL instead
of pointing to a valid node.

Linked Lists: Deleting Nodes page 15© Jonathan Cazalas

Linked Lists: Deleting Nodes

 4 Cases of Deletion:
4) Special case: deleting the only node in the list

 Think about how you make this happen:
 We simply need to save NULL into myList

 This bypasses Node # 7
 Where is NULL currently saved?

 In the “next” of Node # 7
 So take that value (NULL) and save into myList

7

myList

NULL

The initial list

Linked Lists: Deleting Nodes page 16© Jonathan Cazalas

Linked Lists: Deleting Nodes

 4 Cases of Deletion:
4) Special case: deleting the only node in the list

 Think about how you make this happen:
 We simply need to save NULL into myList

 This bypasses Node # 7
 Where is NULL currently saved?

 In the “next” of Node # 7
 So take that value (NULL) and save into myList
 Finally, we free Node # 7

7

myList

NULL

The initial list

Linked Lists: Deleting Nodes page 17© Jonathan Cazalas

Brief Interlude: Human Stupidity

Linked Lists: Deleting Nodes page 18© Jonathan Cazalas

Deleting Nodes (code)
// Function Prototype:
struct ll_node* delete(struct ll_node *list, int target) ;

int main() {
int number = 0;
// We assume that we already created a valid list (myList).
// There are several nodes already in myList.
// This is just a cheesy while loop to call delete function
while(number!= -1) {

// Get the next number.
printf(“Enter data that you wish to delete: ");
scanf("%d", &number);

// Delete node from linked list if number is not -1.
if (number !=-1)

myList = delete(myList, number);
}
return 1;

}

Linked Lists: Deleting Nodes page 19© Jonathan Cazalas

Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);
return list

}
help_ptr = help_ptr->next;

}
}
return list;

} Now let’s look at this code in detail.

Linked Lists: Deleting Nodes page 20© Jonathan Cazalas

Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int value) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
We make two pointers of type ll_node:

 help_ptr and node2delete
 We should all know what help_ptr is for

 Traversing our list
 node2delete will be used later in the program

 When deleting from the middle or end of a list
 node2delete will be used to point to the node we want to delete
 We can then free it accordingly

We then save list into help_ptr
 Remember, list points to the first node of the list
 We take the address that is stored in list and save into help_ptr

 Thus making help_ptr also point to the same first node

Linked Lists: Deleting Nodes page 21© Jonathan Cazalas

Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
We can only delete a node if there are nodes in the list!
 Right.?.
 So if there are no nodes in the list, there is nothing to delete
 That’s what this line checks for
 if help_ptr does equal NULL, then the list is empty
 So:

 The ONLY time we delete (enter into this IF statement) is when:
 help_ptr != NULL
 Meaning, there are node(s) in the list

Linked Lists: Deleting Nodes page 22© Jonathan Cazalas

Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
 Examine this IF statement

 At this point, help_ptr is pointing to the front of the list
 So this says, if our target is found within this first node

 Execute the 3 lines within this IF statement
 So this if statement is specifically checking if we are deleting the

FIRST node in the list

Linked Lists: Deleting Nodes page 23© Jonathan Cazalas

Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
 So IF this is the case (we are deleting the first node):

 Take whatever the first node points to and save it into list
 Remember, help_ptr is pointing to the first node!
 Take the address saved in help_ptr->next and save into list

 So now, list will point to the second node in the list
 If there were multiple nodes

 OR list will point to NULL
 If the list only had one node

Either way, we effectively
bypassed the first node!

Linked Lists: Deleting Nodes page 24© Jonathan Cazalas

Linked Lists: Deleting Nodes

 4 Cases of Deletion:
1) Delete the first node of a list

6
myList

NULL

The list after deleting the first node

4
myList

NULL

The initial list

6

node to be deleted

Linked Lists: Deleting Nodes page 25© Jonathan Cazalas

Linked Lists: Deleting Nodes

 4 Cases of Deletion:
1) Delete the first node of a list

 Think about how you make this happen:
 myList needs to point to the 2nd node in the list
 So we save the address of the 2nd node into myList
 Where do we get that address:

 It is saved in the “next” of the first node
 So we take that address and save it into myList

4
myList

NULL

The initial list

6

node to be deleted

Linked Lists: Deleting Nodes page 26© Jonathan Cazalas

Linked Lists: Deleting Nodes

 4 Cases of Deletion:
1) Delete the first node of a list

 Think about how you make this happen:
 myList needs to point to the 2nd node in the list
 So we save the address of the 2nd node into myList
 Where do we get that address:

 It is saved in the “next” of the first node
 So we take that address and save it into myList
 Finally, we free the 1st node

4
myList

NULL

The initial list

6

node to be deleted

Linked Lists: Deleting Nodes page 27© Jonathan Cazalas

Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
 So IF this is the case (we are deleting the first node):

 Take whatever the first node points to and save it into list
 Remember, help_ptr is pointing to the first node!
 Take the address saved in help_ptr->next and save into list

 So now, list will point to the second node in the list
 If there were multiple nodes

 OR list will point to NULL
 If the list only had one node

Either way, we effectively
bypassed the first node!

Linked Lists: Deleting Nodes page 28© Jonathan Cazalas

Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
 So IF this is the case (we are deleting the first node):

 Now, think, we just bypassed that first node
 But that first node is still there in memory

 So we MUST free the space allocated to it
 If you remember, help_ptr is still pointing to that first node
 Although no part of the list is pointing to it
 We use the free command to free the space pointed to by help_ptr

 Finally, we return the list to main

Linked Lists: Deleting Nodes page 29© Jonathan Cazalas

Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
 The previous IF statement was used to check if the node to be

deleted was at the FRONT of the list
 So now, if we made it this far (to the while loop), we know the

node is NOT at the front of the list
 So we must traverse the list looking for the node to delete

 And then we delete it!

Linked Lists: Deleting Nodes page 30© Jonathan Cazalas

Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
 Specifically, this while loop checks to make sure that the
next of help_ptr is not NULL
Why?

 Cause if it is NULL, then we’ve reached the end of the list
 So we continue this while loop possibly all the way to the end

of the list

Linked Lists: Deleting Nodes page 31© Jonathan Cazalas

Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
 Additionally, within this while loop:

 We will be checking the data value at one node AFTER where
help_ptr points to
 We MUST make sure that help_ptr->next does not equal NULL
 Cuz if it does equal NULL and we try to check the data of a node that

doesn’t exist, we will get an error!

Linked Lists: Deleting Nodes page 32© Jonathan Cazalas

Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);
return list

}
help_ptr = help_ptr->next;

}
}
return list;

} Now let’s look at this while loop in detail.

Linked Lists: Deleting Nodes page 33© Jonathan Cazalas

Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);
return list

}
help_ptr = help_ptr->next;

}

In detail:
 There are 2 main parts of this while loop:

 The IF statement
 Checks to see if that particular node has the target value

 Meaning, this is the node we want to delete
 If found, we delete, we RETURN to main, and we exit the delete function

 Now, if we do NOT enter the IF statement (target not found)
 We step one node over to the next node in the list and continue the loop

Linked Lists: Deleting Nodes page 34© Jonathan Cazalas

Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now let’s examine the actual IF statement:

 What is obvious is that we are checking if some data value is equal
to target
 But what data value? Or what node?
 help_ptr->next->data says to look at the data value in the

node IMMEDIATELY following the one that help_ptr points to

Linked Lists: Deleting Nodes page 35© Jonathan Cazalas

Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now let’s examine the actual IF statement:

 Example:
 If help_ptr is currently pointing to node # 87
 Then help_ptr->next->data says to look at the data value

at node # 88.
 We compare this value to target

Linked Lists: Deleting Nodes page 36© Jonathan Cazalas

Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now let’s examine the actual IF statement:

 So if our target is found at node # 12 (for example)
 Does help_ptr point to that node?

 NO!
 At that point, help_ptr will be pointing to node # 11
 help_ptr->next will be pointing to the node we want to delete

Linked Lists: Deleting Nodes page 37© Jonathan Cazalas

Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now let’s examine the actual IF statement:

 So again, the IF statement says:
 IF the data at the node FOLLOWING the one that help_ptr

points to is equal to our target value
 Then we enter the IF statement and execute those four lines of

code

Linked Lists: Deleting Nodes page 38© Jonathan Cazalas

Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 help_ptr->next is pointing to the node we want to delete
 We will need to free that memory
 At fist glance, you may think we could just type

 free(help_ptr->next)
 Would that work? And if so, what problem arises?

Linked Lists: Deleting Nodes page 39© Jonathan Cazalas

Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 If we immediately type free(help_ptr->next)
 That will delete the correct node!

 BUT, remember, we need to make the connections from the node
before it to the node after it
 ONLY way to reference the node after it is via help_ptr->next

Linked Lists: Deleting Nodes page 40© Jonathan Cazalas

Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 Example:
 help_ptr points to node # 11
 help_ptr->next points to node # 12 (the node we want to delete)
 Of course, node # 12 is linked to node # 13
 And once we delete node # 12, node # 11 must link to node # 13
 If we go ahead and delete node # 12, what happens?

Linked Lists: Deleting Nodes page 41© Jonathan Cazalas

Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 Example:
 If we delete node # 12,
 We will have lost our connection (next pointer) to node # 13

 cuz that pointer is saved in the next of node # 12
 Well why is that a problem?

Linked Lists: Deleting Nodes page 42© Jonathan Cazalas

Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 Example:
 This is a problem because node # 11 needs to point to node #

13
 The address of node # 13 is saved in the next of node # 12
 So if we delete node # 12 immediately, we lose that address

Linked Lists: Deleting Nodes page 43© Jonathan Cazalas

Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 So we SAVE the address stored in help_ptr->next into the
pointer we created earlier, node2delete
 We will free that space in a bit
 BUT first, we need to use that node to refer to the next node in the

list (after the one to be deleted)

Linked Lists: Deleting Nodes page 44© Jonathan Cazalas

Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 Look at the 2nd statement:
 help_ptr->next = help_ptr->next->next;

 This says, look TWO nodes AFTER where help_ptr points to
 Take the address of that node and save it into help_ptr->next
 What does this effectively do?

Linked Lists: Deleting Nodes page 45© Jonathan Cazalas

Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 Look at the 2nd statement:
 For example, say help_ptr points to node # 11.
 Therefore, help_ptr->next->next points to node # 13
 This line says take the address of node # 13 and store it in the
next of node # 11. This BYPASSES node # 12.

Linked Lists: Deleting Nodes page 46© Jonathan Cazalas

Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 Now that we’re done updating the pointers
 Meaning we no longer need the to-be-deleted node

 We free the space allocated to that node
 And finally, we RETURN the head pointer (list) to main

Linked Lists: Deleting Nodes page 47© Jonathan Cazalas

Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

The last possible line to execute is this return list.

When does this execute?

Either:
a) When there are no nodes in the list from the

beginning
 Thus we never even enter the outer IF

statement
b) We traversed the ENTIRE list within the while

loop and could not find the node to delete

Linked Lists: Deleting Nodes page 48© Jonathan Cazalas

Linked Lists: Basic Operations

 What we’ve covered thus far:
 Adding nodes
 Deleting nodes
 And in the process of both of these:

 Searching a list for nodes
 We did this when we traverse the list searching for our

spot to insert/delete

 Traversing a list
 Printing a list
 Guess what?

 That just about covers it. You are ready for Program #2.

Linked Lists: Deleting Nodes page 49© Jonathan Cazalas

Linked Lists: Deleting Nodes

WASN’T
THAT

AMAZING!

Linked Lists: Deleting Nodes page 50© Jonathan Cazalas

Daily Demotivator

Computer Science Department
University of Central Florida

Linked Lists:
Deleting Nodes

COP 3502 – Computer Science I

	Linked Lists:�Deleting Nodes
	Linked Lists: Basic Operations
	Linked Lists: Deleting Nodes
	Linked Lists: Deleting Nodes
	Linked Lists: Deleting Nodes
	Linked Lists: Deleting Nodes
	Linked Lists: Deleting Nodes
	Linked Lists: Deleting Nodes
	Linked Lists: Deleting Nodes
	Linked Lists: Deleting Nodes
	Linked Lists: Deleting Nodes
	Linked Lists: Deleting Nodes
	Linked Lists: Deleting Nodes
	Linked Lists: Deleting Nodes
	Linked Lists: Deleting Nodes
	Linked Lists: Deleting Nodes
	Brief Interlude: Human Stupidity
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Linked Lists: Deleting Nodes
	Linked Lists: Deleting Nodes
	Linked Lists: Deleting Nodes
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Deleting Nodes (code)
	Linked Lists: Basic Operations
	Linked Lists: Deleting Nodes
	Daily Demotivator
	Linked Lists:�Deleting Nodes

