
Computer Science Department
University of Central Florida

Linked Lists:
Inserting Nodes

COP 3502 – Computer Science I

Linked Lists: Inserting Nodes page 2© Jonathan Cazalas

Review of Linked Lists

 What is a linked list?
 Sequence of nodes chained together

 Data part
 Link part (points to next node in the chain)

 Need a head pointer to point to the front of list
 Called myList or Head or whatever you want

 It’s goal in life is just to point to the head of the list

 Need a helper pointer to point to traverse list
 help_ptr

 We then save the value stored in myList into help_ptr,
thus allowing help_ptr to also point to the front of the list

 And we can nod use help_ptr to traverse the list

Linked Lists: Inserting Nodes page 3© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 We can use help_ptr to traverse the list pointed to
by myList

 Here would be the instruction to walk one node over:

 Note that the syntax here is correct
 Why?
 Cuz both sides of the assignment statement are pointers to

struct ll_node

 Let’s now examine this statement in detail
 And how it changes our picture

help_ptr = help_ptr->next;

Linked Lists: Inserting Nodes page 4© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Here’s our before picture:
 Remember, what is the goal here?

 We want help_ptr to point to the second node in the list

 The question is:
 How do we accomplish this?

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists: Inserting Nodes page 5© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Think:
 That second node is located somewhere in memory

 It has an address
 Currently where is that address saved?
 In other words, locate the pointer that is pointing to the

second node

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists: Inserting Nodes page 6© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Think:
 The “next” pointer, of the first node, is currently pointing to

the second node
 And what is a pointer? An address!
 So the address of the second node is currently saved in

the “next” pointer of the first node

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists: Inserting Nodes page 7© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Remember:
 We want help_ptr to point to the second node
 So we need to take the address that is stored in the “next”

of the first node and save it into help_ptr
 This will make help_ptr point to the second node

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists: Inserting Nodes page 8© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Again, here’s the instruction that does this:

 Here’s how that statement changes our picture:

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

help_ptr = help_ptr->next;

Linked Lists: Inserting Nodes page 9© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Again, here’s the instruction that does this:

 Here’s how that statement changes our picture:

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

help_ptr = help_ptr->next;

Linked Lists: Inserting Nodes page 10© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Now we could refer to the data field of the second
node as: help_ptr->data

 We can also repeatedly use help_ptr in this fashion
to iterate through the list

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists: Inserting Nodes page 11© Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list
 Assume that myList is already pointing to a

valid linked list of nodes of type ll_node
 Here’s the code to Traverse a linked list:

 Review previous slides for more info on this

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}

Linked Lists: Inserting Nodes page 12© Jonathan Cazalas

Linked Lists: Inserting Nodes

New Material:
Inserting Nodes

Linked Lists: Inserting Nodes page 13© Jonathan Cazalas

Linked Lists: Basic Operations

 Operations Performed on Linked Lists
 Several operations can be performed on linked

lists
 Add a new node
 Delete a node
 Search for a node
 Counting nodes
 Modifying nodes
 and more

 We will build functions to perform these
operations

Linked Lists: Inserting Nodes page 14© Jonathan Cazalas

Linked Lists: Basic Operations

 Design Approach
 Before going further, we must understand the

design approach of our functions
 Functions that change the contents of lists (insertion and

deletion) will return the list head pointer
 Why?
 Let’s say we have a list with 4 nodes and we are adding a

new node
 For the sake of this example, let’s say that based on its key

value, the new node must be inserted at the beginning of the list
 As a result, the address of the front of the list (address of the

first node) has now changed! (within the scope of the func.)
 So we must return the newly updated head of the list
 Now, myList, in main will know to point to the new 1st node

Linked Lists: Inserting Nodes page 15© Jonathan Cazalas

Linked Lists: Basic Operations

 Design Approach
 Before going further, we must understand the

design approach of our functions
 Functions that change the contents of lists (insertion

and deletion) will return the list head pointer
 Here’s an example of when this happens (insertion):

 myList = insertNewNode(...);

 So if the head of the list changes within the
insertNewNode function
 The function MUST return the updated head pointer
 myList will be updated accordingly

 If the head pointer doesn’t change within the function:
 myList is simply reset to its original address

Linked Lists: Inserting Nodes page 16© Jonathan Cazalas

Linked Lists: Basic Operations

 Design Approach
 Before going further, we must understand the

design approach of our functions
 Functions that do not change the contents of the list

return values that are consistent with their purpose
 Example: a function to locate a node will return an integer

(1 perhaps) to indicate whether or not the node was found
 Example: a function to determine the number of nodes in

the list will most likely return an integer count

 Finally, functions that process the entire list, such as
printing the list, will usually simply return void

Linked Lists: Inserting Nodes page 17© Jonathan Cazalas

Linked Lists: Basic Operations

 Linked List Order
 Linked Lists are linear structures

 They should always have some type of order
 This could be chronological order: order of arrival and

insertion into the list
 Key-based order: lexical ordering based on some key

value of the data items (alphabetical by last name, or
ordered by NID, etc)

 Key based lists are the most common
 New nodes are added to the linked list based on the lexical

ordering of key values
 We will focus these slides on how to insert into a

sorted list (key-based list)

Linked Lists: Inserting Nodes page 18© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 There are four main steps involved here:
1) Allocate memory for the new node
2) Determine the insertion point
 You need to locate the new node’s predecessor

 Basically, we need to find the node that comes before
where you want to insert the new node

3) Point the new node to its successor
 To the node that will come after it, once inserted

4) Point the predecessor node to the new node

Linked Lists: Inserting Nodes page 19© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Step 2 is to determine the insertion point

 For this, we need the location of the new node’s
predecessor

 The are four possibilities:
1) The list is empty. Therefore, there is no predecessor, and

new node will become the first node.
2) The new node is to be inserted at the beginning of the list,

so again, there is no predecessor node.
3) The new node is the last node of the list. So its

predecessor was the previous last node
4) The new node is inserted at some arbitrary point, which is

neither the first node or the last node. Meaning, the new
node will go somewhere in the middle of the list.

Linked Lists: Inserting Nodes page 20© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 We mentioned (few slides back) that we will use

sorted linked lists
 Meaning, when we insert, we must insert a new node

into the correct position

 But for now, for the sake of ease:
 We will simply assume that nodes are added to the front

of the list
 We will use a function to add nodes
 The function must then return the new HEAD of the list

 It will be a new head right? Of course! Cuz we just added a
node at the front. This changes what the head pointer will
point to!

Linked Lists: Inserting Nodes page 21© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

 There are two scenarios:
1) The list could be empty

 Meaning, the head pointer, myList, simply points to NULL
2) Or there are existing nodes already in the list

 Let’s look at both of these scenarios...

Linked Lists: Inserting Nodes page 22© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

 There are two scenarios:
1) Insertion into an Empty List

4
myList

NULL

A list after the insertion of the new node

myList
NULL

An empty linked list

4

The new node to be inserted

NULL

Linked Lists: Inserting Nodes page 23© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

 There are two scenarios:
2) Insertion at the Head of an existing list

2
myList

NULL

A list after the insertion of the new node

4

myList
NULL

The initial liked list

4 2

The new node to be inserted

NULL

Linked Lists: Inserting Nodes page 24© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

 There are two scenarios:
1) Insertion into an Empty List
2) Insertion at the Head of an existing list

 Let’s now look at the code for this in detail…

Linked Lists: Inserting Nodes page 25© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 First, here’s a sample node:

 And here is its respective struct skeleton:

data next

struct ll_node {
int data;
struct ll_node *next;

};

Linked Lists: Inserting Nodes page 26© Jonathan Cazalas

Adding Nodes to Front (code)
// Function Prototype:
struct ll_node* addToFront(struct ll_node *list, int value) ;

int main() {
int number = 0;
// We now make our head pointer, myList and initialize to NULL
struct ll_node *myList = NULL;
// User enters data for new node (or -1 to exit)
while(number!= -1) {

// Get the next number.
printf(“Enter data for next node: ");
scanf("%d", &number);

// Add to linked list if it's not -1.
if (number !=-1)

myList = addToFront(myList, number);
}
return 1;

}

Linked Lists: Inserting Nodes page 27© Jonathan Cazalas

Adding Nodes to Front (code)
// Function Prototype:
struct ll_node* addToFront(struct ll_node *list, int value) ;

int main() {
int number = 0;
// We now make our head pointer, myList and initialize to NULL
struct ll_node *myList = NULL;
// User enters data for new node (or -1 to exit)
while(number!= -1) {

// Get the next number.
printf(“Enter data for next node: ");
scanf("%d", &number);

// Add to linked list if it's not -1.
if (number !=-1)

myList = addToFront(myList, number);
}
return 1;

}

So we will make this function: addToFront
What are we sending to the function?
Two parameters:

1) myList, which is the pointer to the head of the list
This allows us to access the linked list from the function

2) And we send over number, which will be the data value of the new
node

What does the function return?
Remember, this function makes a NEW node at the front of the list
We are making a new front of the list
This means that myList, within main, will need to be updated to point to
this new first node within of the list
How do we do that?
The updated address of the head of the list, within the function, is returned
to main and saved into myList

Linked Lists: Inserting Nodes page 28© Jonathan Cazalas

Adding Nodes to Front (code)
struct ll_node* addToFront(struct ll_node *list, int value) {

// Create the new node and put data (from argument) into it
struct ll_node * pNew = (struct ll_node *)

malloc(sizeof(struct ll_node));
pNew->data = value;
pNew->next = NULL;
// If the original list is empty, set the original head
// pointer to point to the new node.
if(list == NULL)

list = pNew;
// Else, list is currently pointing to a non-empty list.
else {

// Point new node to wherever Head pointer pointed to.
pNew->next = list;

// Now make Head pointer point to the new node.
list = pNew;

}
return list;

}

Linked Lists: Inserting Nodes page 29© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

2

The new node to be inserted

NULL

pNew

myList
NULL

An empty linked list

Linked Lists: Inserting Nodes page 30© Jonathan Cazalas

Adding Nodes to Front (code)
struct ll_node* addToFront(struct ll_node *list, int value) {

// Create the new node and put data (from argument) into it
struct ll_node * pNew = (struct ll_node *)

malloc(sizeof(struct ll_node));
pNew->data = value;
pNew->next = NULL;
// If the original list is empty, set the original head
// pointer to point to the new node.
if(list == NULL)

list = pNew;
// Else, list is currently pointing to a non-empty list.
else {

// Point new node to wherever Head pointer pointed to.
pNew->next = list;

// Now make Head pointer point to the new node.
list = pNew;

}
return list;

}

Linked Lists: Inserting Nodes page 31© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

 If the list is empty (myList points to NULL)
 Take the address of pNew and put it into myList
 This makes myList now point to the new Node

2

The new node to be inserted

NULL

pNew

myList
NULL

An empty linked list

Linked Lists: Inserting Nodes page 32© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

2

The new node to be inserted

NULL

pNew

myList
NULL

An empty linked list

myList

NULL

A list after the insertion of the new node

Linked Lists: Inserting Nodes page 33© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

2

The new node to be inserted

NULL

pNew

myList
NULL

An empty linked list

myList

2 NULL

A list after the insertion of the new node

Linked Lists: Inserting Nodes page 34© Jonathan Cazalas

Adding Nodes to Front (code)
struct ll_node* addToFront(struct ll_node *list, int value) {

// Create the new node and put data (from argument) into it
struct ll_node * pNew = (struct ll_node *)

malloc(sizeof(struct ll_node));
pNew->data = value;
pNew->next = NULL;
// If the original list is empty, set the original head
// pointer to point to the new node.
if(list == NULL)

list = pNew;
// Else, list is currently pointing to a non-empty list.
else {

// Point new node to wherever Head pointer pointed to.
pNew->next = list;

// Now make Head pointer point to the new node.
list = pNew;

}
return list;

}

Linked Lists: Inserting Nodes page 35© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

 ELSE, if the list is non-empty
 Take the address that myList points to and put in the
next of pNew

 This makes pNew point to the (previously) first node

myList
NULL

The initial liked list

4
2

The new node to be inserted

NULL

pNew

Linked Lists: Inserting Nodes page 36© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

myList
NULL

The initial liked list

4
2

The new node to be inserted

NULL

pNew

Linked Lists: Inserting Nodes page 37© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

myList

NULL

A list after the insertion of the new node

4

myList
NULL

The initial liked list

4
2

The new node to be inserted

pNew

Linked Lists: Inserting Nodes page 38© Jonathan Cazalas

Adding Nodes to Front (code)
struct ll_node* addToFront(struct ll_node *list, int value) {

// Create the new node and put data (from argument) into it
struct ll_node * pNew = (struct ll_node *)

malloc(sizeof(struct ll_node));
pNew->data = value;
pNew->next = NULL;
// If the original list is empty, set the original head
// pointer to point to the new node.
if(list == NULL)

list = pNew;
// Else, list is currently pointing to a non-empty list.
else {

// Point new node to wherever Head pointer pointed to.
pNew->next = list;

// Now make Head pointer point to the new node.
list = pNew;

}
return list;

}

Linked Lists: Inserting Nodes page 39© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

myList

NULL

A list after the insertion of the new node

4

myList
NULL

The initial liked list

4
2

The new node to be inserted

pNew

Basically, take the
address stored in
pNew and put it in
myList

Linked Lists: Inserting Nodes page 40© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

myList

NULL

A list after the insertion of the new node

4

myList
NULL

The initial liked list

4
2

The new node to be inserted

pNew

Linked Lists: Inserting Nodes page 41© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

myList
NULL

The initial liked list

4
2

The new node to be inserted

pNew

2
myList

NULL

A list after the insertion of the new node

4

Linked Lists: Inserting Nodes page 42© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Now let’s assume that we are adding always to

the end of the list
 The code in main won’t change a whole lot
 But the function to add to the end is a bit

different.
 Can anyone tell us why?
 Because we need to traverse the list in order to

arrive at the insertion point (the end of the list)
 Here’s the picture followed by the code:

Linked Lists: Inserting Nodes page 43© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the END of a list

4
myList

NULL

A list after the insertion of the new node

6

myList
NULL

The initial liked list

4 6

The new node to be inserted

NULL

Linked Lists: Inserting Nodes page 44© Jonathan Cazalas

Adding Nodes to End (code)
// Function Prototype:
struct ll_node* addToEnd(struct ll_node *list, int value) ;

int main() {
int number = 0;
// We now make our head pointer, myList and initialize to NULL
struct ll_node *myList = NULL;
// User enters data for new node (or -1 to exit)
while(number!= -1) {

// Get the next number.
printf(“Enter data for next node: ");
scanf("%d", &number);

// Add to linked list if it's not -1.
if (number !=-1)

myList = addToEnd(myList, number);
}
return 1;

}

Linked Lists: Inserting Nodes page 45© Jonathan Cazalas

Adding Nodes to End (code)
struct ll_node* addToEnd(struct ll_node *list, int value) {

// Make helper pointer and store head of list into it
struct ll_node *help_ptr = list;

// Create the new node and put data (from argument) into it
struct ll_node * pNew = (struct ll_node *)

malloc(sizeof(struct ll_node));
pNew->data = value;
pNew->next = NULL;
// If list is empty, pNew becomes the first node
if (list == NULL)

return pNew;
// Else, traverse the list to arrive a the last node
while (help_ptr->next != NULL)

help_ptr = help_ptr->next;
// Make the last node point to the to-be-inserted node, i.e.
// put the address of new node into the last node’s “next”
help_ptr->next = pNew;

// Return a pointer to the modified list
return list;

}

If the list is empty:
pNew will be the first (and only) node of the list
So we have our head pointer, myList or list

And this head pointer MUST point to the new node, pNew
So we can simply return the address of pNew to main
Remember, we called this function with:
myList = addToEnd(myList, number);
So whatever we return will be saved in myList (head pointer)

Linked Lists: Inserting Nodes page 46© Jonathan Cazalas

Adding Nodes to End (code)
struct ll_node* addToEnd(struct ll_node *list, int value) {

// Make helper pointer and store head of list into it
struct ll_node *help_ptr = list;

// Create the new node and put data (from argument) into it
struct ll_node * pNew = (struct ll_node *)

malloc(sizeof(struct ll_node));
pNew->data = value;
pNew->next = NULL;
// If list is empty, pNew becomes the first node
if (list == NULL)

return pNew;
// Else, traverse the list to arrive a the last node
while (help_ptr->next != NULL)

help_ptr = help_ptr->next;
// Make the last node point to the to-be-inserted node, i.e.
// put the address of new node into the last node’s “next”
help_ptr->next = pNew;

// Return a pointer to the modified list
return list;

}

Linked Lists: Inserting Nodes page 47© Jonathan Cazalas

Brief Interlude: Human Stupidity

Linked Lists: Inserting Nodes page 48© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the MIDDLE of a list:

 Think about what must happen.
 We are inserting a new node between two other nodes
 So the new node must now point to its successor node

 Meaning, it must point to where its predecessor node was
pointing to (before insertion of new node)

 Then the address of the new node must be saved into
the “next” of the predecessor node.
 These two steps maintain the integrity of the list

 Again, here’s some purty pictures

Linked Lists: Inserting Nodes page 49© Jonathan Cazalas

 Adding Nodes to a Linked List
 Adding to the MIDDLE of a list:

Linked Lists: Insertion

6

The new node to be inserted

NULL

myList
The initial liked list

NULL4 8

2
myList

NULL

A list after the insertion of the new node

86

Linked Lists: Inserting Nodes page 50© Jonathan Cazalas

myList
NULL4 8

Step 2: Find
logical predecessor

6

Step 1: Allocate memory

6

myList
NULL4 8

Step 3: Point new
node to its

logical successor

6

myList
NULL4 8

Step 4: Point predecessor
node to the new node

Linked Lists: Insertion in Detail

Linked Lists: Inserting Nodes page 51© Jonathan Cazalas

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the MIDDLE of a list:

 We MUST first point the new node to the successor
node

 THEN, and only then, can we point the predecessor
node to the new node

 Why MUST this happen in this specific order?
 What if we first point the predecessor node to the new

node?
 What’s wrong with that?

 If we first point the predecessor node to the new node,
we will have lost our connection to the successor node
 Only the predecessor knew where the successor is!

Linked Lists: Inserting Nodes page 52© Jonathan Cazalas

Adding Nodes to Sorted List

 Adding Nodes to a Linked List
 Adding nodes to a sorted list

 Now we are hopefully ready to add a new node to any
location of a sorted linked list
 This new node may end up being inserted at the beginning,

the middle, or at the end.
 The following code takes care of all possibilities

 This is the “real” linked list code
 The previous two sets of code were just teaching examples

 Again, we are just using an int as the data item
 The nodes of the linked list are sorted in ascending

order based on the value stored in each node’s data

Linked Lists: Inserting Nodes page 53© Jonathan Cazalas

Adding Nodes to Sorted List (code)
// Function Prototype:
struct ll_node* insert(struct ll_node *list, int value) ;

int main() {
int number = 0;
// We now make our head pointer, myList and initialize to NULL
struct ll_node *myList = NULL;
// User enters data for new node (or -1 to exit)
while(number!= -1) {

// Get the next number.
printf(“Enter data for next node: ");
scanf("%d", &number);

// Add to linked list if it's not -1.
if (number !=-1)

myList = insert(myList, number);
}
return 1;

}

Linked Lists: Inserting Nodes page 54© Jonathan Cazalas

Adding Nodes to Sorted List (code)
struct ll_node* insert(struct ll_node *list, int value) {

// Make helper pointer and store head of list into it
struct ll_node *help_ptr = list;

// Create the new node and put data (from argument) into it
struct ll_node * pNew = (struct ll_node *)

malloc(sizeof(struct ll_node));
pNew->data = value;
pNew->next = NULL;
// First, we take care of Insertion into an empty list
// OR Insertion at the front of a non-empty list
if (list == NULL || list->data > value) {

pNew->next = list;
list = pNew;
return list;

}
Let’s now look at this IF statement in detail.

Linked Lists: Inserting Nodes page 55© Jonathan Cazalas

Adding Nodes to Sorted List (code)

 Adding nodes to front of sorted list
 Think about it:

 When do we go inside the IF statement?
1) If list is NULL

 What does this mean?
 It means the list is currently empty

2) OR if the data at the node that list points to is greater
than value
 Meaning, the value we want to insert is smaller than the current

first node. So, the new node must be placed at the front.

if (list == NULL || list->data > value) {
pNew->next = list;
list = pNew;
return list;

}

Linked Lists: Inserting Nodes page 56© Jonathan Cazalas

Adding Nodes to Sorted List (code)

 Adding nodes to front of sorted list
 Now look at the three lines inside the statement

 In both scenarios (empty list or insert at front)
 We MUST take the address that is currently saved in list

and save it in pNew->next
 What does this do?

 It makes pNew point to whatever list was pointing to
 So if list was pointing to node A (the previous first node)
 Now pNew will also point to node A
 Which makes sense, since pNew will be the new first node
if (list == NULL || list->data > value) {

pNew->next = list;
list = pNew;
return list;

}

Linked Lists: Inserting Nodes page 57© Jonathan Cazalas

Adding Nodes to Sorted List (code)

 Adding nodes to front of sorted list
 Now look at the three lines inside the statement

 In both scenarios (empty list or insert at front)
 Also, we MUST take the address of pNew and save it into
list

 This makes list point to pNew (the new first node)
 Which makes sense right? list is the head pointer!

 Remember, the only goal in life of the head pointer is to point
to the first node!

 Finally, we return list (head pointer address) to main
if (list == NULL || list->data > value) {

pNew->next = list;
list = pNew;
return list;

}

Linked Lists: Inserting Nodes page 58© Jonathan Cazalas

Adding Nodes to Sorted List (code)

struct ll_node* addToEnd(struct ll_node *list, int value) {

// ...
// CODE BELONGING HERE WAS ON PREVIOUS PAGE
// ...

// Continuing the code ...

// Insert at MIDDLE or END of list
// We MUST now find the right place to insert
while(help_ptr->next != NULL && help_ptr->next->data < value)

help_ptr = help_ptr->next;

// So help_ptr is now pointing to the node right before
// the spot where we want to insert.
// Now insert pNew right after the position that help_ptr points to
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return help_ptr;

}

While:
there are still nodes in the list
AND the data value at the node AFTER the one that help_ptr
points to is less than the value of the new node to be inserted

Meaning, we haven’t reached the insertion spot yet
KEEP traversing the list to find insertion spot

Linked Lists: Inserting Nodes page 59© Jonathan Cazalas

Adding Nodes to Sorted List (code)

struct ll_node* addToEnd(struct ll_node *list, int value) {

// ...
// CODE BELONGING HERE WAS ON PREVIOUS PAGE
// ...

// Continuing the code ...

// Insert at MIDDLE or END of list
// Find the right place to insert
while(help_ptr->next != NULL && help_ptr->next->data < value)

help_ptr = help_ptr->next;

// So help_ptr is now pointing to the node right before
// the spot where we want to insert.
// Now insert pNew right after the position that help_ptr points to
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return help_ptr;

}

Notice the && instead of ||
So when do we exit the while loop?

If the data in the node AFTER the one that help_ptr points to is
greater than or equal to value

Meaning, we’ve found our insertion spot (after help_ptr)
OR we exit once help_ptr->next is NULL (reached end of list)

Linked Lists: Inserting Nodes page 60© Jonathan Cazalas

Adding Nodes to Sorted List (code)

struct ll_node* addToEnd(struct ll_node *list, int value) {

// ...
// CODE BELONGING HERE WAS ON PREVIOUS PAGE
// ...

// Continuing the code ...

// Insert at MIDDLE or END of list
// Find the right place to insert
while(help_ptr->next != NULL && help_ptr->next->data < value)

help_ptr = help_ptr->next;

// So help_ptr is now pointing to the node right before
// the spot where we want to insert.
// Now insert pNew right after the position that help_ptr points to
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return list;

} Let’s now look at these last three lines in detail.

Linked Lists: Inserting Nodes page 61© Jonathan Cazalas

Adding Nodes to Sorted List (code)

 Adding nodes to middle or end of sorted list
 Remember:

 We just traversed the list with help_ptr to find our
insertion spot

 So right now, help_ptr is pointing to the node
immediately BEFORE our insertion spot.
 It is pointing to the predecessor.

 Example: if we need to insert at position 12, then
help_ptr is currently pointing to position 11

// ... previous code was here
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return list;

}

Linked Lists: Inserting Nodes page 62© Jonathan Cazalas

Adding Nodes to Sorted List (code)

 Adding nodes to middle or end of sorted list
 Now, think about what happens:

 If we are inserting pNew at the END of the list
 pNew->next will need to point to NULL

 Indicating the end of the list
 So we execute this line of code

 pNew->next = help_ptr->next;

 Since help_ptr was pointing to the last node
 help_ptr->next will have NULL in it
 We save that value into pNew->next
// ... previous code was here
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return list;

}

Linked Lists: Inserting Nodes page 63© Jonathan Cazalas

Adding Nodes to Sorted List (code)

 Adding nodes to middle or end of sorted list
 Now, think about what happens:

 If we are inserting pNew at the END of the list
 Also, the previous last node in the list

 Which is currently pointed to by help_ptr
 Must now point to the new last node (pNew)
 So we execute this line of code:

 help_ptr->next = pNew;

 Saves the address of pNew into help_ptr->next

// ... previous code was here
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return list;

}

Linked Lists: Inserting Nodes page 64© Jonathan Cazalas

Adding Nodes to Sorted List (code)

 Adding nodes to middle or end of sorted list
 Now, think about what happens:

 If we are inserting pNew at the END of the list
 The connections are now made
 And we can simply return the head of the list

 return list;

// ... previous code was here
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return list;

}

Linked Lists: Inserting Nodes page 65© Jonathan Cazalas

Adding Nodes to Sorted List (code)

 Adding nodes to middle or end of sorted list
 Now, think about what happens:

 If we are inserting pNew in the MIDDLE of the list
 pNew->next will need to point to the next node

 The node that will come after it (once pNew is inserted)
 So we execute this line of code

 pNew->next = help_ptr->next;

 Since help_ptr was pointing to the predecessor
 help_ptr->next will have the address of the successor
 We save that value into pNew->next
// ... previous code was here
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return list;

}

Linked Lists: Inserting Nodes page 66© Jonathan Cazalas

Adding Nodes to Sorted List (code)

 Adding nodes to middle or end of sorted list
 Now, think about what happens:

 If we are inserting pNew in the MIDDLE of the list
 Also, the predecessor

 Which is currently pointed to by help_ptr
 Must now point the newly inserted node (pNew)
 So we execute this line of code:

 help_ptr->next = pNew;

 This saves the address of pNew into help_ptr->next

// ... previous code was here
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return list;

}

Linked Lists: Inserting Nodes page 67© Jonathan Cazalas

Adding Nodes to Sorted List (code)

 Adding nodes to middle or end of sorted list
 Now, think about what happens:

 If we are inserting pNew in the MIDDLE of the list
 The connections are now made
 And we can simply return the head of the list

 return list;

// ... previous code was here
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return list;

}

Linked Lists: Inserting Nodes page 68© Jonathan Cazalas

Linked Lists: Inserting Nodes

WASN’T
THAT

AWESOME!

Linked Lists: Inserting Nodes page 69© Jonathan Cazalas

Daily Demotivator

Computer Science Department
University of Central Florida

Linked Lists:
Inserting Nodes

COP 3502 – Computer Science I

	Linked Lists:�Inserting Nodes
	Review of Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Traversing Linked Lists
	Linked Lists: Inserting Nodes
	Linked Lists: Basic Operations
	Linked Lists: Basic Operations
	Linked Lists: Basic Operations
	Linked Lists: Basic Operations
	Linked Lists: Basic Operations
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Adding Nodes to Front (code)
	Adding Nodes to Front (code)
	Adding Nodes to Front (code)
	Linked Lists: Insertion
	Adding Nodes to Front (code)
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Adding Nodes to Front (code)
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Adding Nodes to Front (code)
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Adding Nodes to End (code)
	Adding Nodes to End (code)
	Adding Nodes to End (code)
	Brief Interlude: Human Stupidity
	Linked Lists: Insertion
	Linked Lists: Insertion
	
	Linked Lists: Insertion
	Adding Nodes to Sorted List
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Linked Lists: Inserting Nodes
	Daily Demotivator
	Linked Lists:�Inserting Nodes

