
Computer Science Department
University of Central Florida

Linked Lists

COP 3502 – Computer Science I

Linked Lists page 2© Jonathan Cazalas

Linked Lists

 What are they?
 Abstraction of a list: i.e. a sequence of nodes in

which each node is linked to the node following
it.

 Why not just use an array?
 Each node in an array is stored, physically, in

contiguous spaces in memory
 Arrays are fixed size (not dynamic)
 Inserting and deleting elements is difficult
 In an array of size 100, if we insert an element after

the 10th element, all the remaining 90 elements must
be shifted.

Linked Lists page 3© Jonathan Cazalas

Linked Lists

 Why use linked lists?
 They are dynamic; length can increase or

decrease as necessary
 Each node does not necessarily follow the

previous one in memory
 Insertion and deletion is cheap!

 Only need to change a few nodes (at most)

 Is there a negative aspect of linked lists?
 Getting to a particular node may take a large

number of operations, as we do not know the
address of any individual node

Linked Lists page 4© Jonathan Cazalas

Linked Lists

 In detail:
 A linked list is an ordered collection of data

 Each element (generally called nodes) contains the
location of the next element in the list

 Each node essentially has two parts:
 The data part

 If this was a list of student records, for example, the
data here may consist of a name, PID, social security
number, address, phone, email, etc.

 The link part
 This link is used to chain the nodes together.
 It simply contains a pointer variable that points to the

next node in the linked list
 Variable is often called “next”

data next

Linked Lists page 5© Jonathan Cazalas

Linked Lists - Example

struct ll_node a, b, c;

a.data = 1;
b.data = 2;
c.data = 3;
a.next = b.next = c.next = NULL;

data next

1 NULL

a

data next

2 NULL

b

data next

3 NULL

c

struct ll_node {
int data;
struct ll_node *next;

};

Previous struct declaration:

Linked Lists page 6© Jonathan Cazalas

Linked Lists – Example (cont.)

a.next = &b;
b.next = &c;
a.next -> data
a.next -> next -> data
b.next -> next -> data

data next

1

a

data next

3 NULL

c

data next

2

b

has value 2
has value 3
error !!

Linked Lists page 7© Jonathan Cazalas

Linked Lists

 In detail:
 You can think of each node as a record

 The first part of the record is all the necessary data
 The final part of the record is a field that stores a pointer to

the next node in the list

 Head of the list
 Each node of the list is created dynamically and points to the

next node
 So from the first node, we can get to the second, and so on

 But how do you reach the first node?
 You must have a pointer variable that simply points to the

first node of the list
 Simply called whatever you choose to name your list (myList)

Linked Lists page 8© Jonathan Cazalas

Linked Lists

 Example of a Linked List
 Don’t get confused over the “data” here

 It could be simply an integer value
 It could be 20+ separate fields of information storing

name, address, phone, email, etc.

data next data next data next
myList

NULL

A linked list containing three elements

Linked Lists page 9© Jonathan Cazalas

Linked Lists

 Example of an Empty Linked List
 This list is empty
 There are no nodes (elements)
 myList simply points to NULL

 Which signifies an empty list

myList
NULL

An empty linked list

Linked Lists page 10© Jonathan Cazalas

Nodes of a Linked List – Examples

 Linked List Nodes
 Here’s a picture of a single linked list node

 Here’s the struct that we would use to define this
node

data next

struct ll_node {
int data;
struct ll_node *next;

};

So what is *next?
It is a pointer of type
struct ll_node.
It stores the address to
the next node in the list.

*For the sake of ease,
data will simply be an int
value in this example.

Linked Lists page 11© Jonathan Cazalas

Nodes of a Linked List – Examples

 Linked List Nodes
 A node with three data fields:

struct student_node {
char name[20];
char PID[8];
double grdPts;
struct student_node *next;

};

grdPts nextPIDname

Linked Lists page 12© Jonathan Cazalas

Nodes of a Linked List – Examples

 Linked List Nodes
 A struct within a node:

struct person{
char name[20];
char address[50];
char phone[10];

};

struct person_node{
struct person data;
struct person_node *next;

};

next

phoneaddressname

data

Linked Lists page 13© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Let’s assume we already have a list created with

several nodes
 Don’t worry how we made this

 We’ll get to that in a bit

 We access the list via the head ptr, myList
 How would you move to the 2nd node in the list?

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists page 14© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 One of the most common errors:

 “moving” the head of the list to point to subsequent
nodes

 Consider if we made myList point to the second node
 Instead of pointing to the first node

 We would essentially lose access to the first node
 Cause each node only points to the NEXT node

 Not the previous one

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists page 15© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 How then do we traverse (walk down) a list?
 We make a temporary ll_node pointer to help

us move through the list

 It isn’t good to leave variables uninitialized
 So we initialize help_ptr to NULL

struct ll_node *help_ptr;
help_ptr = NULL;

help_ptr NULL

Linked Lists page 16© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 We want help_ptr to traverse the list

 So it needs access to the list
 We use the following line:

 Remember that myList is a pointer of type ll_node
 Also, help_ptr is a pointer of type ll_node
 So this line basically says:

 Take the address that is saved in myList (where myList
points to)

 And save that address into help_ptr (make help_ptr
point to the same place)

help_ptr = myList;

Linked Lists page 17© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 We want help_ptr to traverse the list

 So it needs access to the list
 We use the following line:

 Here’s what our picture looks like now:
help_ptr = myList;

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists page 18© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Now, here’s how we could access the “data”

field of the first node in the list:
(*myList).data OR (*help_ptr).data

myList->data OR help_ptr->data

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists page 19© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Now, here’s how we could access the “data”

field of the first node in the list:
(*myList).data OR (*help_ptr).data

myList->data OR help_ptr->data

 Few things to notice here:
 Both of these expressions refer to the same exact
data variable
 since myList and help_ptr are pointing to the same

exact node of the linked list
 We use the dot operator to refer to a field within the

record, as learned with structs in COP 3223

Linked Lists page 20© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Now, here’s how we could access the “data”

field of the first node in the list:
(*myList).data OR (*help_ptr).data

myList->data OR help_ptr->data

 Few things to notice here:
 Remember that myList and help_ptr are NOT actual

nodes. They are NOT of type ll_node.
 Rather, they are both POINTERS of type ll_node

 Therefore, in order to access the first node, we MUST
dereference the pointer using the * symbol
 Notice that myList.data is syntactically incorrect because
myList is NOT of type ll_node

Linked Lists page 21© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Now, here’s how we could access the “data”

field of the first node in the list:
(*myList).data OR (*help_ptr).data

myList->data OR help_ptr->data

 Few things to notice here:
 Finally, notice that the arrow, ->, provides a valid,

alternative syntax
 Most people find it easier to type

 help_ptr->data

 instead of
 (*help_ptr).data

Linked Lists page 22© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 We can use help_ptr to traverse the list pointed to
by myList

 Here would be the instruction to walk one node over:

 Note that the syntax here is correct
 Why?
 Cuz both sides of the assignment statement are pointers to

struct ll_node

 Let’s now examine this statement in detail
 And how it changes our picture

help_ptr = help_ptr->next;

Linked Lists page 23© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Here’s our before picture:
 Remember, what is the goal here?

 We want help_ptr to point to the second node in the list

 The question is:
 How do we accomplish this?

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists page 24© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Think:
 That second node is located somewhere in memory

 It has an address
 Currently where is that address saved?
 In other words, locate the pointer that is pointing to the

second node

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists page 25© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Think:
 The “next” pointer, of the first node, is currently pointing to

the second node
 And what is a pointer? An address!
 So the address of the second node is currently saved in

the “next” pointer of the first node

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists page 26© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Remember:
 We want help_ptr to point to the second node
 So we need to take the address that is stored in the “next”

of the first node and save it into help_ptr
 This will make help_ptr point to the second node

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists page 27© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Again, here’s the instruction that does this:

 Here’s how that statement changes our picture:

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

help_ptr = help_ptr->next;

Linked Lists page 28© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Again, here’s the instruction that does this:

 Here’s how that statement changes our picture:

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

help_ptr = help_ptr->next;

Linked Lists page 29© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Now we could refer to the data field of the second
node as: help_ptr->data

 We can also repeatedly use help_ptr in this fashion
to iterate through the list

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists page 30© Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 We could also modify the values in the list with a
statement like:

 This saves 10 into the data field of the second node
 This sort of manipulation is handy for “editing” lists

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

help_ptr->data = 10;

Linked Lists page 31© Jonathan Cazalas

Brief Interlude: Human Stupidity

Linked Lists page 32© Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list
 Assume that myList is already pointing to a

valid linked list of nodes of type ll_node
 Here’s the code to Traverse a linked list:

 Let’s take a closer look

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}

Linked Lists page 33© Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 We start by making our help_ptr
 myList is the pointer that points to our actual list
 So we save this value into help_ptr

 Which we use to traverse the list

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}

Linked Lists page 34© Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 The while statement simply makes sure that we are

pointing to a valid node
 Because if help_ptr is NULL, we have reached the

end of the list

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}

Linked Lists page 35© Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 So while help_ptr is not NULL

 Meaning, we are at a valid node of the linked list
 We print out that particular node’s “data” field

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}

Linked Lists page 36© Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 So while help_ptr is not NULL

 We then move help_ptr over to the next node in the list
 This is the SAME line of code that we went over in detail

on earlier slides

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}

Linked Lists page 37© Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 So while help_ptr is not NULL

 We basically print a node’s data and then traverse down
the list one step

 We do this again, and again, and again, and …

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}

Linked Lists page 38© Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 At some point, we will reach the last node

 The “next” value of that node will point to NULL
 Which will get saved into help_ptr
 Which will kick us out of this while loop

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}

Linked Lists page 39© Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list
 Food for thought:

 Would the following code be valid if we didn’t use the
helper pointer node, help_ptr?

 Yes, it would be valid
 And it would traverse the list just fine

// myList is already pointing to
// a valid list

while (myList != NULL) {
printf("%d ", myList->data);
myList = myList->next;

}

Linked Lists page 40© Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list
 Food for thought:

 But what is the negative aspect of doing this?
 In other words, why do we want to use help_ptr?

 Once this while loop finishes, myList is pointing to
NULL! We’ve effectively LOST OUR LIST!

// myList is already pointing to
// a valid list

while (myList != NULL) {
printf("%d ", myList->data);
myList = myList->next;

}

Linked Lists page 41© Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list
 Remember:

 When traversing linked lists, you ALWAYS want to use
a helper pointer

 NEVER use the head of the list for this purpose
 This allows you to maintain the integrity of the list

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}

Linked Lists page 42© Jonathan Cazalas

Traversing Linked Lists

 Traverse and Modifying data of a linked list
 Assume that myList is already pointing to a

valid linked list of nodes of type ll_node
 This struct (ll_node) was defined earlier

 Let’s say we want to add “10” to the data field of
all nodes. Here’s the code to do this:
struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
help_ptr->data += 10;
help_ptr = help_ptr->next;

}

Linked Lists page 43© Jonathan Cazalas

Traversing Linked Lists

 Traverse and Modifying data of a linked list

 Let’s take a closer look:
 This works just like the last example
 Instead of printing out the data field of each node
 We are modifying each data field

 Simply adding 10 to whatever is already stored in it

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
help_ptr->data += 10;
help_ptr = help_ptr->next;

}

Linked Lists page 44© Jonathan Cazalas

Traversing Linked Lists

 Traverse and Modifying data of a linked list

 Let’s take a closer look:
 We then traverse the list with the second instruction of

the while loop
 When we reach the end of the list, help_ptr->next

will be NULL, and we will exit the loop

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
help_ptr->data += 10;
help_ptr = help_ptr->next;

}

Linked Lists page 45© Jonathan Cazalas

Linked Lists - Operations

 There are several basic operations that
need to be performed on linked lists:

1. Add a node.
2. Delete a node.
3. Search for a node.

 For each of these, you need to know how to
traverse the list from the previous slides

 Next time, we will go over Adding nodes to a list

Linked Lists page 46© Jonathan Cazalas

Linked Lists

WASN’T
THAT

AMAZING!

Linked Lists page 47© Jonathan Cazalas

Daily Demotivator

Computer Science Department
University of Central Florida

Linked Lists

COP 3502 – Computer Science I

	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists - Example
	Linked Lists – Example (cont.)
	Linked Lists
	Linked Lists
	Linked Lists
	Nodes of a Linked List – Examples
	Nodes of a Linked List – Examples
	Nodes of a Linked List – Examples
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Brief Interlude: Human Stupidity
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Linked Lists - Operations
	Linked Lists
	Daily Demotivator
	Linked Lists

