
Computer Science Department
University of Central Florida

Linked Lists

COP 3502 – Computer Science I



Linked Lists page 2©  Jonathan Cazalas

Linked Lists

 What are they?
 Abstraction of a list:  i.e. a sequence of nodes in 

which each node is linked to the node following 
it.

 Why not just use an array?
 Each node in an array is stored, physically, in 

contiguous spaces in memory
 Arrays are fixed size (not dynamic)
 Inserting and deleting elements is difficult
 In an array of size 100, if we insert an element after 

the 10th element, all the remaining 90 elements must 
be shifted.



Linked Lists page 3©  Jonathan Cazalas

Linked Lists

 Why use linked lists?
 They are dynamic; length can increase or 

decrease as necessary
 Each node does not necessarily follow the 

previous one in memory
 Insertion and deletion is cheap!

 Only need to change a few nodes (at most)

 Is there a negative aspect of linked lists?
 Getting to a particular node may take a large 

number of operations, as we do not know the 
address of any individual node



Linked Lists page 4©  Jonathan Cazalas

Linked Lists

 In detail:
 A linked list is an ordered collection of data

 Each element (generally called nodes) contains  the 
location of the next element in the list

 Each node essentially has two parts:
 The data part

 If this was a list of student records, for example, the 
data here may consist of a name, PID, social security 
number, address, phone, email, etc.

 The link part
 This link is used to chain the nodes together.
 It simply contains a pointer variable that points to the 

next node in the linked list 
 Variable is often called “next”

data next



Linked Lists page 5©  Jonathan Cazalas

Linked Lists - Example

struct ll_node a, b, c;

a.data = 1;
b.data = 2;
c.data = 3;
a.next = b.next = c.next = NULL;

data next

1 NULL

a

data next

2 NULL

b

data next

3 NULL

c

struct ll_node {
int data;
struct ll_node *next;

};

Previous struct declaration:



Linked Lists page 6©  Jonathan Cazalas

Linked Lists – Example (cont.)

a.next = &b;
b.next = &c;
a.next -> data
a.next -> next -> data
b.next -> next -> data

data next

1

a

data next

3 NULL

c

data next

2

b

has value 2
has value 3
error !!



Linked Lists page 7©  Jonathan Cazalas

Linked Lists

 In detail:
 You can think of each node as a record

 The first part of the record is all the necessary data
 The final part of the record is a field that stores a pointer to 

the next node in the list

 Head of the list
 Each node of the list is created dynamically and points to the 

next node
 So from the first node, we can get to the second, and so on

 But how do you reach the first node?
 You must have a pointer variable that simply points to the 

first node of the list
 Simply called whatever you choose to name your list (myList)



Linked Lists page 8©  Jonathan Cazalas

Linked Lists

 Example of a Linked List
 Don’t get confused over the “data” here

 It could be simply an integer value
 It could be 20+ separate fields of information storing 

name, address, phone, email, etc.

data next data next data next
myList

NULL

A linked list containing three elements



Linked Lists page 9©  Jonathan Cazalas

Linked Lists

 Example of an Empty Linked List
 This list is empty
 There are no nodes (elements)
 myList simply points to NULL

 Which signifies an empty list

myList
NULL

An empty linked list



Linked Lists page 10©  Jonathan Cazalas

Nodes of a Linked List – Examples

 Linked List Nodes
 Here’s a picture of a single linked list node

 Here’s the struct that we would use to define this 
node

data next

struct ll_node {
int data;
struct ll_node *next;

};

So what is *next?
It is a pointer of type 
struct ll_node.
It stores the address to 
the next node in the list.

*For the sake of ease, 
data will simply be an int 
value in this example.



Linked Lists page 11©  Jonathan Cazalas

Nodes of a Linked List – Examples

 Linked List Nodes
 A node with three data fields:

struct student_node {
char name[20];
char PID[8];
double grdPts;
struct student_node *next;

};

grdPts nextPIDname



Linked Lists page 12©  Jonathan Cazalas

Nodes of a Linked List – Examples

 Linked List Nodes
 A struct within a node:

struct person{
char name[20];
char address[50];
char phone[10];

};

struct person_node{
struct person data;
struct person_node *next;

};

next

phoneaddressname

data



Linked Lists page 13©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Let’s assume we already have a list created with 

several nodes
 Don’t worry how we made this

 We’ll get to that in a bit

 We access the list via the head ptr, myList
 How would you move to the 2nd node in the list?

data next data next data next
myList

NULL

A linked list containing many elements

……….



Linked Lists page 14©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 One of the most common errors:

 “moving” the head of the list to point to subsequent 
nodes

 Consider if we made myList point to the second node
 Instead of pointing to the first node

 We would essentially lose access to the first node
 Cause each node only points to the NEXT node

 Not the previous one

data next data next data next
myList

NULL

A linked list containing many elements

……….



Linked Lists page 15©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 How then do we traverse (walk down) a list?
 We make a temporary ll_node pointer to help 

us move through the list

 It isn’t good to leave variables uninitialized
 So we initialize help_ptr to NULL

struct ll_node *help_ptr;
help_ptr = NULL;

help_ptr NULL



Linked Lists page 16©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 We want help_ptr to traverse the list

 So it needs access to the list
 We use the following line:

 Remember that myList is a pointer of type ll_node
 Also, help_ptr is a pointer of type ll_node
 So this line basically says:

 Take the address that is saved in myList (where myList
points to)

 And save that address into help_ptr (make help_ptr
point to the same place)

help_ptr = myList;



Linked Lists page 17©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 We want help_ptr to traverse the list

 So it needs access to the list
 We use the following line:

 Here’s what our picture looks like now:
help_ptr = myList;

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….



Linked Lists page 18©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Now, here’s how we could access the “data” 

field of the first node in the list:
(*myList).data   OR   (*help_ptr).data

myList->data     OR   help_ptr->data

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….



Linked Lists page 19©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Now, here’s how we could access the “data” 

field of the first node in the list:
(*myList).data   OR   (*help_ptr).data

myList->data     OR   help_ptr->data

 Few things to notice here:
 Both of these expressions refer to the same exact 
data variable
 since myList and help_ptr are pointing to the same 

exact node of the linked list
 We use the dot operator to refer to a field within the 

record, as learned with structs in COP 3223



Linked Lists page 20©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Now, here’s how we could access the “data” 

field of the first node in the list:
(*myList).data   OR   (*help_ptr).data

myList->data     OR   help_ptr->data

 Few things to notice here:
 Remember that myList and help_ptr are NOT actual 

nodes.  They are NOT of type ll_node.
 Rather, they are both POINTERS of type ll_node

 Therefore, in order to access the first node, we MUST 
dereference the pointer using the * symbol
 Notice that myList.data is syntactically incorrect because 
myList is NOT of type ll_node 



Linked Lists page 21©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Now, here’s how we could access the “data” 

field of the first node in the list:
(*myList).data   OR   (*help_ptr).data

myList->data     OR   help_ptr->data

 Few things to notice here:
 Finally, notice that the arrow, ->, provides a valid, 

alternative syntax
 Most people find it easier to type

 help_ptr->data

 instead of
 (*help_ptr).data



Linked Lists page 22©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 We can use help_ptr to traverse the list pointed to 
by myList

 Here would be the instruction to walk one node over:

 Note that the syntax here is correct
 Why?
 Cuz both sides of the assignment statement are pointers to 

struct ll_node

 Let’s now examine this statement in detail
 And how it changes our picture

help_ptr = help_ptr->next;



Linked Lists page 23©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Here’s our before picture:
 Remember, what is the goal here?

 We want help_ptr to point to the second node in the list

 The question is:
 How do we accomplish this?

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….



Linked Lists page 24©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Think:
 That second node is located somewhere in memory

 It has an address
 Currently where is that address saved?
 In other words, locate the pointer that is pointing to the 

second node

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….



Linked Lists page 25©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Think:
 The “next” pointer, of the first node, is currently pointing to 

the second node
 And what is a pointer?  An address!
 So the address of the second node is currently saved in 

the “next” pointer of the first node

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….



Linked Lists page 26©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Remember:
 We want help_ptr to point to the second node
 So we need to take the address that is stored in the “next” 

of the first node and save it into help_ptr
 This will make help_ptr point to the second node

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….



Linked Lists page 27©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Again, here’s the instruction that does this:

 Here’s how that statement changes our picture:

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

help_ptr = help_ptr->next;



Linked Lists page 28©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Again, here’s the instruction that does this:

 Here’s how that statement changes our picture:

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

help_ptr = help_ptr->next;



Linked Lists page 29©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Now we could refer to the data field of the second 
node as:  help_ptr->data

 We can also repeatedly use help_ptr in this fashion 
to iterate through the list

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….



Linked Lists page 30©  Jonathan Cazalas

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 We could also modify the values in the list with a 
statement like:

 This saves 10 into the data field of the second node
 This sort of manipulation is handy for “editing” lists

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

help_ptr->data = 10;



Linked Lists page 31©  Jonathan Cazalas

Brief Interlude:  Human Stupidity



Linked Lists page 32©  Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list
 Assume that myList is already pointing to a 

valid linked list of nodes of type ll_node
 Here’s the code to Traverse a linked list:

 Let’s take a closer look

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}



Linked Lists page 33©  Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 We start by making our help_ptr
 myList is the pointer that points to our actual list
 So we save this value into help_ptr

 Which we use to traverse the list

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}



Linked Lists page 34©  Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 The while statement simply makes sure that we are 

pointing to a valid node
 Because if help_ptr is NULL, we have reached the 

end of the list

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}



Linked Lists page 35©  Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 So while help_ptr is not NULL

 Meaning, we are at a valid node of the linked list
 We print out that particular node’s “data” field

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}



Linked Lists page 36©  Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 So while help_ptr is not NULL

 We then move help_ptr over to the next node in the list
 This is the SAME line of code that we went over in detail 

on earlier slides

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}



Linked Lists page 37©  Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 So while help_ptr is not NULL

 We basically print a node’s data and then traverse down 
the list one step

 We do this again, and again, and again, and …

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}



Linked Lists page 38©  Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 At some point, we will reach the last node

 The “next” value of that node will point to NULL
 Which will get saved into help_ptr
 Which will kick us out of this while loop

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}



Linked Lists page 39©  Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list
 Food for thought:

 Would the following code be valid if we didn’t use the 
helper pointer node, help_ptr?

 Yes, it would be valid
 And it would traverse the list just fine

// myList is already pointing to
// a valid list

while (myList != NULL) {
printf("%d ", myList->data);
myList = myList->next;

}



Linked Lists page 40©  Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list
 Food for thought:

 But what is the negative aspect of doing this?
 In other words, why do we want to use help_ptr?

 Once this while loop finishes, myList is pointing to 
NULL!  We’ve effectively LOST OUR LIST!

// myList is already pointing to
// a valid list

while (myList != NULL) {
printf("%d ", myList->data);
myList = myList->next;

}



Linked Lists page 41©  Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list
 Remember:

 When traversing linked lists, you ALWAYS want to use 
a helper pointer

 NEVER use the head of the list for this purpose
 This allows you to maintain the integrity of the list

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}



Linked Lists page 42©  Jonathan Cazalas

Traversing Linked Lists

 Traverse and Modifying data of a linked list
 Assume that myList is already pointing to a 

valid linked list of nodes of type ll_node
 This struct (ll_node) was defined earlier

 Let’s say we want to add “10” to the data field of 
all nodes.  Here’s the code to do this:
struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
help_ptr->data += 10;
help_ptr = help_ptr->next;

}



Linked Lists page 43©  Jonathan Cazalas

Traversing Linked Lists

 Traverse and Modifying data of a linked list

 Let’s take a closer look:
 This works just like the last example
 Instead of printing out the data field of each node
 We are modifying each data field

 Simply adding 10 to whatever is already stored in it

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
help_ptr->data += 10;
help_ptr = help_ptr->next;

}



Linked Lists page 44©  Jonathan Cazalas

Traversing Linked Lists

 Traverse and Modifying data of a linked list

 Let’s take a closer look:
 We then traverse the list with the second instruction of 

the while loop
 When we reach the end of the list, help_ptr->next

will be NULL, and we will exit the loop

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
help_ptr->data += 10;
help_ptr = help_ptr->next;

}



Linked Lists page 45©  Jonathan Cazalas

Linked Lists - Operations

 There are several basic operations that 
need to be performed on linked lists:

1. Add a node.
2. Delete a node.
3. Search for a node.

 For each of these, you need to know how to 
traverse the list from the previous slides

 Next time, we will go over Adding nodes to a list



Linked Lists page 46©  Jonathan Cazalas

Linked Lists

WASN’T
THAT

AMAZING!



Linked Lists page 47©  Jonathan Cazalas

Daily Demotivator



Computer Science Department
University of Central Florida

Linked Lists

COP 3502 – Computer Science I


	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists - Example
	Linked Lists – Example (cont.)
	Linked Lists
	Linked Lists
	Linked Lists
	Nodes of a Linked List – Examples
	Nodes of a Linked List – Examples
	Nodes of a Linked List – Examples
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Brief Interlude:  Human Stupidity
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Traversing Linked Lists
	Linked Lists - Operations
	Linked Lists
	Daily Demotivator
	Linked Lists

