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Linked Lists

 What are they?
 Abstraction of a list:  i.e. a sequence of nodes in 

which each node is linked to the node following 
it.

 Why not just use an array?
 Each node in an array is stored, physically, in 

contiguous spaces in memory
 Arrays are fixed size (not dynamic)
 Inserting and deleting elements is difficult
 In an array of size 100, if we insert an element after 

the 10th element, all the remaining 90 elements must 
be shifted.
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Linked Lists

 Why use linked lists?
 They are dynamic; length can increase or 

decrease as necessary
 Each node does not necessarily follow the 

previous one in memory
 Insertion and deletion is cheap!

 Only need to change a few nodes (at most)

 Is there a negative aspect of linked lists?
 Getting to a particular node may take a large 

number of operations, as we do not know the 
address of any individual node
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Linked Lists

 In detail:
 A linked list is an ordered collection of data

 Each element (generally called nodes) contains  the 
location of the next element in the list

 Each node essentially has two parts:
 The data part

 If this was a list of student records, for example, the 
data here may consist of a name, PID, social security 
number, address, phone, email, etc.

 The link part
 This link is used to chain the nodes together.
 It simply contains a pointer variable that points to the 

next node in the linked list 
 Variable is often called “next”

data next
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Linked Lists - Example

struct ll_node a, b, c;

a.data = 1;
b.data = 2;
c.data = 3;
a.next = b.next = c.next = NULL;

data next

1 NULL

a

data next

2 NULL

b

data next

3 NULL

c

struct ll_node {
int data;
struct ll_node *next;

};

Previous struct declaration:
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Linked Lists – Example (cont.)

a.next = &b;
b.next = &c;
a.next -> data
a.next -> next -> data
b.next -> next -> data

data next

1

a

data next

3 NULL

c

data next

2

b

has value 2
has value 3
error !!
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Linked Lists

 In detail:
 You can think of each node as a record

 The first part of the record is all the necessary data
 The final part of the record is a field that stores a pointer to 

the next node in the list

 Head of the list
 Each node of the list is created dynamically and points to the 

next node
 So from the first node, we can get to the second, and so on

 But how do you reach the first node?
 You must have a pointer variable that simply points to the 

first node of the list
 Simply called whatever you choose to name your list (myList)
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Linked Lists

 Example of a Linked List
 Don’t get confused over the “data” here

 It could be simply an integer value
 It could be 20+ separate fields of information storing 

name, address, phone, email, etc.

data next data next data next
myList

NULL

A linked list containing three elements



Linked Lists page 9©  Jonathan Cazalas

Linked Lists

 Example of an Empty Linked List
 This list is empty
 There are no nodes (elements)
 myList simply points to NULL

 Which signifies an empty list

myList
NULL

An empty linked list
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Nodes of a Linked List – Examples

 Linked List Nodes
 Here’s a picture of a single linked list node

 Here’s the struct that we would use to define this 
node

data next

struct ll_node {
int data;
struct ll_node *next;

};

So what is *next?
It is a pointer of type 
struct ll_node.
It stores the address to 
the next node in the list.

*For the sake of ease, 
data will simply be an int 
value in this example.
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Nodes of a Linked List – Examples

 Linked List Nodes
 A node with three data fields:

struct student_node {
char name[20];
char PID[8];
double grdPts;
struct student_node *next;

};

grdPts nextPIDname
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Nodes of a Linked List – Examples

 Linked List Nodes
 A struct within a node:

struct person{
char name[20];
char address[50];
char phone[10];

};

struct person_node{
struct person data;
struct person_node *next;

};

next

phoneaddressname

data
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Linked Lists

 Accessing Nodes of a Linked List
 Let’s assume we already have a list created with 

several nodes
 Don’t worry how we made this

 We’ll get to that in a bit

 We access the list via the head ptr, myList
 How would you move to the 2nd node in the list?

data next data next data next
myList

NULL

A linked list containing many elements

……….
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Linked Lists

 Accessing Nodes of a Linked List
 One of the most common errors:

 “moving” the head of the list to point to subsequent 
nodes

 Consider if we made myList point to the second node
 Instead of pointing to the first node

 We would essentially lose access to the first node
 Cause each node only points to the NEXT node

 Not the previous one

data next data next data next
myList

NULL

A linked list containing many elements

……….
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Linked Lists

 Accessing Nodes of a Linked List
 How then do we traverse (walk down) a list?
 We make a temporary ll_node pointer to help 

us move through the list

 It isn’t good to leave variables uninitialized
 So we initialize help_ptr to NULL

struct ll_node *help_ptr;
help_ptr = NULL;

help_ptr NULL
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Linked Lists

 Accessing Nodes of a Linked List
 We want help_ptr to traverse the list

 So it needs access to the list
 We use the following line:

 Remember that myList is a pointer of type ll_node
 Also, help_ptr is a pointer of type ll_node
 So this line basically says:

 Take the address that is saved in myList (where myList
points to)

 And save that address into help_ptr (make help_ptr
point to the same place)

help_ptr = myList;
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Linked Lists

 Accessing Nodes of a Linked List
 We want help_ptr to traverse the list

 So it needs access to the list
 We use the following line:

 Here’s what our picture looks like now:
help_ptr = myList;

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….
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Linked Lists

 Accessing Nodes of a Linked List
 Now, here’s how we could access the “data” 

field of the first node in the list:
(*myList).data   OR   (*help_ptr).data

myList->data     OR   help_ptr->data

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….
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Linked Lists

 Accessing Nodes of a Linked List
 Now, here’s how we could access the “data” 

field of the first node in the list:
(*myList).data   OR   (*help_ptr).data

myList->data     OR   help_ptr->data

 Few things to notice here:
 Both of these expressions refer to the same exact 
data variable
 since myList and help_ptr are pointing to the same 

exact node of the linked list
 We use the dot operator to refer to a field within the 

record, as learned with structs in COP 3223
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Linked Lists

 Accessing Nodes of a Linked List
 Now, here’s how we could access the “data” 

field of the first node in the list:
(*myList).data   OR   (*help_ptr).data

myList->data     OR   help_ptr->data

 Few things to notice here:
 Remember that myList and help_ptr are NOT actual 

nodes.  They are NOT of type ll_node.
 Rather, they are both POINTERS of type ll_node

 Therefore, in order to access the first node, we MUST 
dereference the pointer using the * symbol
 Notice that myList.data is syntactically incorrect because 
myList is NOT of type ll_node 
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Linked Lists

 Accessing Nodes of a Linked List
 Now, here’s how we could access the “data” 

field of the first node in the list:
(*myList).data   OR   (*help_ptr).data

myList->data     OR   help_ptr->data

 Few things to notice here:
 Finally, notice that the arrow, ->, provides a valid, 

alternative syntax
 Most people find it easier to type

 help_ptr->data

 instead of
 (*help_ptr).data
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Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 We can use help_ptr to traverse the list pointed to 
by myList

 Here would be the instruction to walk one node over:

 Note that the syntax here is correct
 Why?
 Cuz both sides of the assignment statement are pointers to 

struct ll_node

 Let’s now examine this statement in detail
 And how it changes our picture

help_ptr = help_ptr->next;
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Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Here’s our before picture:
 Remember, what is the goal here?

 We want help_ptr to point to the second node in the list

 The question is:
 How do we accomplish this?

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….
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Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Think:
 That second node is located somewhere in memory

 It has an address
 Currently where is that address saved?
 In other words, locate the pointer that is pointing to the 

second node

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….
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Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Think:
 The “next” pointer, of the first node, is currently pointing to 

the second node
 And what is a pointer?  An address!
 So the address of the second node is currently saved in 

the “next” pointer of the first node

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….
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Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Remember:
 We want help_ptr to point to the second node
 So we need to take the address that is stored in the “next” 

of the first node and save it into help_ptr
 This will make help_ptr point to the second node

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….
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Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Again, here’s the instruction that does this:

 Here’s how that statement changes our picture:

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

help_ptr = help_ptr->next;
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Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Again, here’s the instruction that does this:

 Here’s how that statement changes our picture:

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

help_ptr = help_ptr->next;
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Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Now we could refer to the data field of the second 
node as:  help_ptr->data

 We can also repeatedly use help_ptr in this fashion 
to iterate through the list

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….
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Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 We could also modify the values in the list with a 
statement like:

 This saves 10 into the data field of the second node
 This sort of manipulation is handy for “editing” lists

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

help_ptr->data = 10;
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Brief Interlude:  Human Stupidity
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Traversing Linked Lists

 Traverse and Print out data of a linked list
 Assume that myList is already pointing to a 

valid linked list of nodes of type ll_node
 Here’s the code to Traverse a linked list:

 Let’s take a closer look

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}
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Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 We start by making our help_ptr
 myList is the pointer that points to our actual list
 So we save this value into help_ptr

 Which we use to traverse the list

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}
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Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 The while statement simply makes sure that we are 

pointing to a valid node
 Because if help_ptr is NULL, we have reached the 

end of the list

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}
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Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 So while help_ptr is not NULL

 Meaning, we are at a valid node of the linked list
 We print out that particular node’s “data” field

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}
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Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 So while help_ptr is not NULL

 We then move help_ptr over to the next node in the list
 This is the SAME line of code that we went over in detail 

on earlier slides

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}
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Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 So while help_ptr is not NULL

 We basically print a node’s data and then traverse down 
the list one step

 We do this again, and again, and again, and …

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}
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Traversing Linked Lists

 Traverse and Print out data of a linked list

 Let’s take a closer look:
 At some point, we will reach the last node

 The “next” value of that node will point to NULL
 Which will get saved into help_ptr
 Which will kick us out of this while loop

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}



Linked Lists page 39©  Jonathan Cazalas

Traversing Linked Lists

 Traverse and Print out data of a linked list
 Food for thought:

 Would the following code be valid if we didn’t use the 
helper pointer node, help_ptr?

 Yes, it would be valid
 And it would traverse the list just fine

// myList is already pointing to
// a valid list

while (myList != NULL) {
printf("%d ", myList->data);
myList = myList->next;

}
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Traversing Linked Lists

 Traverse and Print out data of a linked list
 Food for thought:

 But what is the negative aspect of doing this?
 In other words, why do we want to use help_ptr?

 Once this while loop finishes, myList is pointing to 
NULL!  We’ve effectively LOST OUR LIST!

// myList is already pointing to
// a valid list

while (myList != NULL) {
printf("%d ", myList->data);
myList = myList->next;

}
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Traversing Linked Lists

 Traverse and Print out data of a linked list
 Remember:

 When traversing linked lists, you ALWAYS want to use 
a helper pointer

 NEVER use the head of the list for this purpose
 This allows you to maintain the integrity of the list

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}



Linked Lists page 42©  Jonathan Cazalas

Traversing Linked Lists

 Traverse and Modifying data of a linked list
 Assume that myList is already pointing to a 

valid linked list of nodes of type ll_node
 This struct (ll_node) was defined earlier

 Let’s say we want to add “10” to the data field of 
all nodes.  Here’s the code to do this:
struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
help_ptr->data += 10;
help_ptr = help_ptr->next;

}
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Traversing Linked Lists

 Traverse and Modifying data of a linked list

 Let’s take a closer look:
 This works just like the last example
 Instead of printing out the data field of each node
 We are modifying each data field

 Simply adding 10 to whatever is already stored in it

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
help_ptr->data += 10;
help_ptr = help_ptr->next;

}
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Traversing Linked Lists

 Traverse and Modifying data of a linked list

 Let’s take a closer look:
 We then traverse the list with the second instruction of 

the while loop
 When we reach the end of the list, help_ptr->next

will be NULL, and we will exit the loop

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
help_ptr->data += 10;
help_ptr = help_ptr->next;

}
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Linked Lists - Operations

 There are several basic operations that 
need to be performed on linked lists:

1. Add a node.
2. Delete a node.
3. Search for a node.

 For each of these, you need to know how to 
traverse the list from the previous slides

 Next time, we will go over Adding nodes to a list
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Linked Lists

WASN’T
THAT

AMAZING!
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Daily Demotivator
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