
Computer Science Department
University of Central Florida

Sorted List
Matching Problem

COP 3502 – Computer Science I

Sorted List Matching Problem page 2© Jonathan Cazalas

Sorted List Matching Problem

 Sorted List Matching Problem
 You are given two lists of Last Names

 Within each list, all names are distinct
 Also, each list is already sorted

 Problem:
 Output the names common to both lists

Sorted List Matching Problem page 3© Jonathan Cazalas

Sorted List Matching Problem

 Sorted List Matching Problem
 Perhaps a standard way to attack this problem:
 For each name on list #1, do the following:

a) Search for the current name in list #2
b) If the name is found, output it.

 If the list is unsorted, steps a and b above may
take n steps, where n is the size of the second
list.
 Who can tell us why?

 Steps a and b are run for each of the n names in
List #1, resulting in an n2 running time.

Sorted List Matching Problem page 4© Jonathan Cazalas

Sorted List Matching Problem

 Sorted List Matching Problem
 If we don’t take advantage of the fact that the lists are

sorted, we can do a brute force algorithm as follows:

void printMatches(char list1[][SIZE], char list2[][SIZE],
int len1, int len2) {

int i,j;
for (i=0; i<len1; i++) {

for (j=0; j<len2; j++) {
if (strcmp(list1[i],list2[j]) == 0) {

printf(“%s\n”, list1[i]);
break;

}
}

}
}

Sorted List Matching Problem page 5© Jonathan Cazalas

Sorted List Matching Problem

 Sorted List Matching Problem
 The previous solution did NOT use the fact that

the lists are already sorted.
 We can exploit this fact by using a Binary

Search in step (a)

 So what is a Binary Search…

Sorted List Matching Problem page 6© Jonathan Cazalas

Sorted List Matching Problem

 Binary Search
 a binary search is an algorithm for locating the position of an

item in a sorted array.
 The idea is simple: compare the target to the middle item in the

list.
 If the target is the same as the middle item

 you've found the target.
 If it's before the middle item

 repeat this procedure on the items before the middle.
 If it's after the middle item

 repeat on the items after the middle.
 The method halves the number of items to check each

time
 It runs in logarithmic time: O(log n)

Sorted List Matching Problem page 7© Jonathan Cazalas

Sorted List Matching Problem

 Sorted List Matching Problem
 Remember our initial algorithm:
 For each name on list #1, do the following:

a) Search for the current name in list #2
b) If the name is found, output it.

 So we use a Binary Search in step (a)
 Assuming both lists are the same size (n)

 Binary search takes about log n steps
 This has to be repeated n times

 Meaning, for each of the n names in List #1
 So total number of steps is n*log n, or nlogn
 Much better than our initial solution of n2 steps

Sorted List Matching Problem page 8© Jonathan Cazalas

Sorted List Matching Problem

 Sorted List Matching Problem
 Our code would look like this:

 Now let’s look at the binSearch function that we are
calling within this code

void printMatches(char list1[][SIZE], char list2[][SIZE],
int len1, int len2) {

int i;
for (i=0; i<len1; i++) {

if (binSearch(list2, len2, list1[i]))
printf(“%s\n”, list1[i]);

}
}

Sorted List Matching Problem page 9© Jonathan Cazalas

Sorted List Matching Problem

 Sorted List Matching Problem
int binSearch(char list[][SIZE], int len,

char name[]) {
int low = 0, high = len-1;
while (low <= high) {

int mid = (low+high)/2;
int cmp = strcmp(name, list[mid]);
if (cmp < 0)

high = mid-1;
else if (cmp > 0)

low = mid+1;
else

return 1;
}
return 0;

}

Sorted List Matching Problem page 10© Jonathan Cazalas

Sorted List Matching Problem

 Sorted List Matching Problem
 A question becomes: Can we do better?

 The answer is YES!

 What is the one piece of information that the last
algorithm did not assume?
 Remember, we assumed that List #2 was sorted

 This allowed us to do the Binary search on List #2
 But we did NOT assume that List #1 is sorted.
 Our algorithm works regardless of the order of names

in List #1
 But since List #1 is sorted, can we exploit this fact and

make a better algorithm?

Sorted List Matching Problem page 11© Jonathan Cazalas

Sorted List Matching Problem

 Sorted List Matching Problem
 Consider how you would actually do this task in

real life (meaning with a pencil and paper)

List #1 List #2
Adams Boston
Bell Davis
Davis Duncan
Harding Francis
Jenkins Gamble
Lincoln Harding
Simpson Mason
Zoeller Simpson

Sorted List Matching Problem page 12© Jonathan Cazalas

Sorted List Matching Problem

 Sorted List Matching Problem
 Consider how you would actually do this task in

real life (meaning with a pencil and paper)
 You’d see that Adams and Boston are fist on each list
 Immediately you’d know Adams isn’t a match

 And you’d proceed down List #1 checking names,
alphabetically, before Boston (from List #2)

 So you’d skip right past Bell, knowing it can’t be a match
 Since the first name in List #2 is Boston

 Then you come to Davis in List #1
 And you immediately conclude that that Boston (from List #2)

couldn’t be a match either
 So you move down in List #2 to Davis, and voila!, a match

 Davis from List #1 and Davis from List #2

Sorted List Matching Problem page 13© Jonathan Cazalas

Sorted List Matching Problem

 Sorted List Matching Problem
 Consider how you would actually do this task in

real life (meaning with a pencil and paper)
 So what do we recognize from this?
 We see that we ONLY go down on the list of names
 And for every “step”, so to speak

 You end up reading a new name (or more) off one of the
two lists

 So now we have a more formalized version of
the algorithm…

Sorted List Matching Problem page 14© Jonathan Cazalas

Sorted List Matching Problem

 Sorted List Matching Problem
 Best Algorithm:

1) Start two “markers”
 One for each list, at the beginning of both lists

2) Repeat the following steps until one marker has
reached the end of the list
a) Compare the two names that the markers are pointing at
b) If they are equal,

 Output the name and advance BOTH makers one spot
c) If they are NOT equal,

 Simply advance the marker pointing to the name that comes
earlier, alphabetically, one spot

 Try coding this up on your own

Sorted List Matching Problem page 15© Jonathan Cazalas

Sorted List Matching Problem

 Sorted List Matching Problem
 Best Algorithm: Run-Time Analysis

 For each loop iteration, we advance at least one
marker

 As such, the maximum number of iterations would be
the total number of names on both lists, which is n, the
length of both lists
 For each iteration, we are doing a constant amount of work
 Essentially a comparison and/or outputting a name

 Thus, this algorithm runs in about 2n steps
 An improvement over our previous algorithm

Sorted List Matching Problem page 16© Jonathan Cazalas

Sorted List Matching Problem

WASN’T
THAT

GREAT!

Sorted List Matching Problem page 17© Jonathan Cazalas

Daily Demotivator

Computer Science Department
University of Central Florida

Sorted List
Matching Problem

COP 3502 – Computer Science I

	Sorted List�Matching Problem
	Sorted List Matching Problem
	Sorted List Matching Problem
	Sorted List Matching Problem
	Sorted List Matching Problem
	Sorted List Matching Problem
	Sorted List Matching Problem
	Sorted List Matching Problem
	Sorted List Matching Problem
	Sorted List Matching Problem
	Sorted List Matching Problem
	Sorted List Matching Problem
	Sorted List Matching Problem
	Sorted List Matching Problem
	Sorted List Matching Problem
	Sorted List Matching Problem
	Daily Demotivator
	Sorted List�Matching Problem

