


Computer Science Department University of Central Florida

COP 3502 – Computer Science I

Insertion Revisited

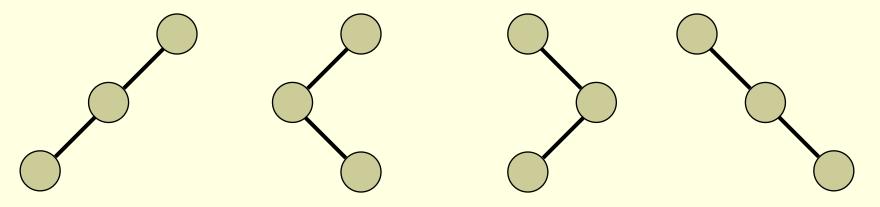
- Let's take another look at insertion into AVL Trees
- Hopefully this will be a bit easier than previous slides
- Assuming you only have two nodes in your tree,
- what are the two possible trees you may have?



S

AVL Trees: Insertion Revisited

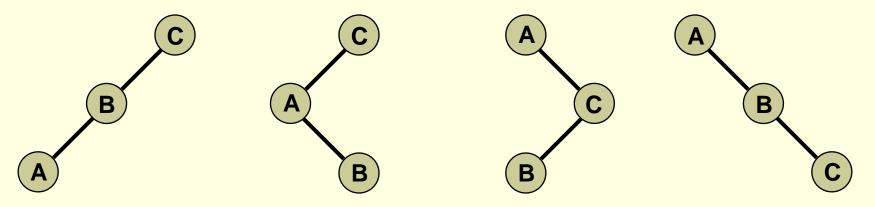
AVL Trees: Insertion


Given these two trees, if we want to create an imbalance, where must we insert?

- Clearly, we must insert at the lower of the 2 nodes
- This will create a scenario where the left subtree has a height that is 2 greater than the right subtree
 - Or the opposite for the other tree depicted
- Now, from these two trees, draw all FOUR possible trees that can be created by inserting a new node

AVL Trees: Insertion

Here are all four unbalanced trees that we can make from three nodes:

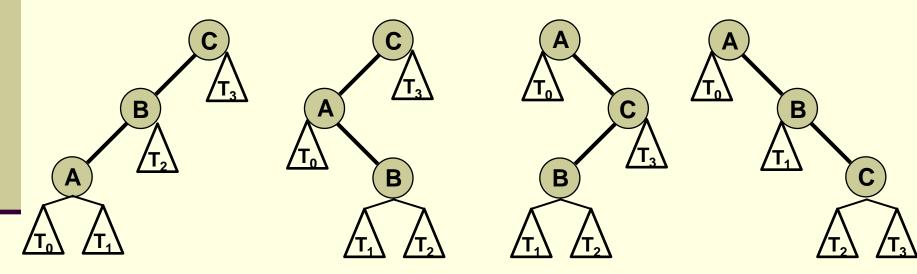


- Now, label these nodes with the labels A, B, and C
 - Where A is the smallest of the three nodes, B is the middle node, and C is the largest.
 - The inorder traversal of each tree should be A, B, C

AVL Trees: Insertion Revisited

AVL Trees: Insertion

Here are all four trees with the node lables in their inorder listing:


 Any time an imbalance occurs, it is localized to three nodes and their four subtrees

- These are the four possibilities
- Now we add in the depiction of the four subtrees of A, B, and C

AVL Trees: Insertion Revisited

AVL Trees: Insertion

Here are all four trees with the node lables in their inorder listing with subtrees in their inorder listing:

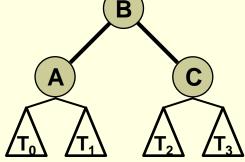
• We denote the four subtrees as T_0 , T_1 , T_2 , and T_3

And they are listed in their inorder listing

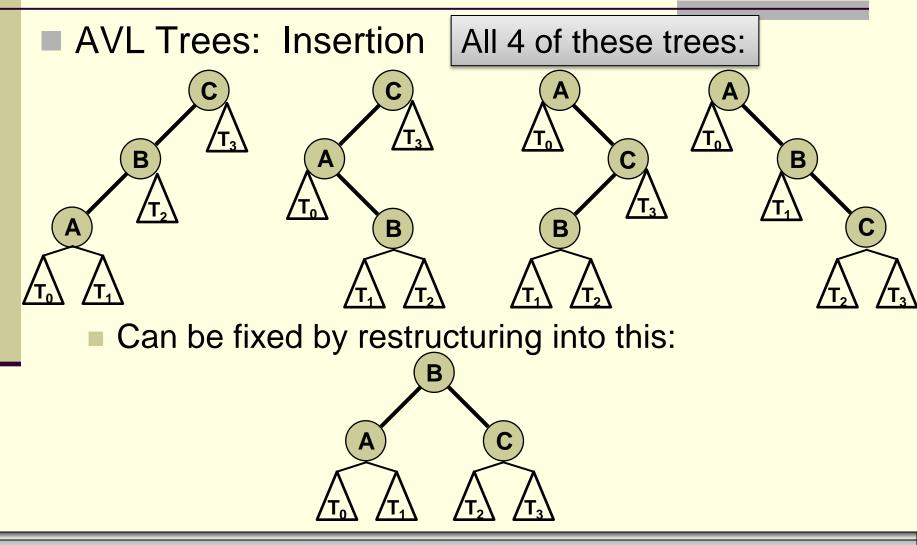
AVL Trees: Insertion Revisited

AVL Trees: Insertion

- So what is the purpose of all this?
- We said this method is supposedly MUCH easier than dealing with the various rotations of the tree
- So we've done all this labeling
 - Finding nodes 'A', 'B', and 'C' and labeling them as such
- How they heck does this help us???


Here ya go…

S


AVL Trees: Insertion Revisited

AVL Trees: Insertion

- Part 1: Once an insertion causes an imbalance, find and label the nodes 'A', 'B', and 'C'
- Part 2: Once the nodes are labeled, no matter what structural imbalance occurred, they can all be fixed the same way:

 Simply restructure those three nodes, and their four respective subtrees, as shown above, and the imbalance will be corrected!

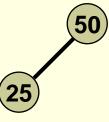
AVL Trees: Insertion Revisited

AVL Trees: Insertion Revisited

- AVL Trees: Insertion
 - Here are the basic steps:
 - 1. Do a NORMAL binary search tree insert
 - following the ordering property of a BST
 - 2. Restore the balance of the tree (if needed) based off of this newly inserted leaf node

The restoration step requires a bit of clarification...

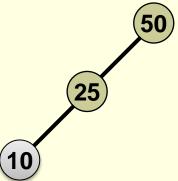
AVL Trees: Insertion Revisited


- Restoration of a node:
 - 1. Calculate the heights of the left and right subtrees. Use this to set the (potentially) new height of the node
 - 2. IF they are within one of each other, recursively restore the parent node.
 - 3. IF NOT, then perform the appropriate restructuring, described previously, on that particular node.
 - 4. THEN, recursively call the restore function on the appropriate parent node.
- Note: one rebalancing will always do the trick, though we must make the recursive calls to move up the tree so that the heights stored at each node are properly recalculated.

AVL Trees: Insertion Revisited

- More <u>Practical Rules</u>:
 - Insert a node following rules of BST insertion
 - Once you insert a new node, perform the following:
 - 1. Start finding the balance factors of ALL nodes <u>along the</u> <u>path from the insertion point to the root</u>
 - 2. <u>As soon as</u> you find the first node out of balance, <u>mark</u> <u>that node</u> as one of your three "restructuring nodes"
 - 3. Then, take <u>two steps</u>, back <u>down</u>, towards the insertion point and <u>mark those two nodes</u> as well.
 - 4. <u>Label</u> those 'A, B, C' nodes appropriately (and subtrees)
 - 5. <u>Restructure</u> those three nodes (and their subtrees)

- Example 1:
 - The most simple insert into an AVL tree, which dictates a rebalance, is inserting a third node in an AVL tree that only has two nodes.
 - Given this tree:


- We insert a node with the value 10
- This node clearly goes to the left of 25

S

AVL Trees: Insertion Revisited

AVL Trees: Insertion

- Example 1:
 - The most simple insert into an AVL tree, which dictates a rebalance, is inserting a third node in an AVL tree that only has two nodes.

So now, follow the "Practical Rules" to rebalance this tree

AVL Trees: Insertion Revisited

- More <u>Practical Rules</u>:
 - Insert a node following rules of BST insertion
 - Once you insert a new node, perform the following:
 - 1. Start finding the balance factors of ALL nodes <u>along the</u> <u>path from the insertion point to the root</u>
 - 2. <u>As soon as</u> you find the first node out of balance, <u>mark</u> <u>that node</u> as one of your three "restructuring nodes"
 - 3. Then, take <u>two steps</u>, back <u>down</u>, towards the insertion point and <u>mark those two nodes</u> as well.
 - 4. <u>Label</u> those 'A, B, C' nodes appropriately (and subtrees)
 - 5. <u>Restructure</u> those three nodes (and their subtrees)

AVL Trees: Insertion

Example 1:

So now, follow the "Practical Rules" to rebalance this tree

50

1. Start finding the balance factors of ALL nodes <u>along the</u> <u>path from the insertion point to the root</u>

AVL Trees: Insertion

Example 1:

So now, follow the "Practical Rules" to rebalance this tree

50

2. <u>As soon as</u> you find the first node out of balance, <u>mark</u> <u>that node</u> as one of your three "restructuring nodes"

AVL Trees: Insertion

Example 1:

So now, follow the "Practical Rules" to rebalance this tree

50

2. <u>As soon as</u> you find the first node out of balance, <u>mark</u> <u>that node</u> as one of your three "restructuring nodes"

AVL Trees: Insertion

Example 1:

So now, follow the "Practical Rules" to rebalance this tree

50

AVL Trees: Insertion

Example 1:

So now, follow the "Practical Rules" to rebalance this tree

50

AVL Trees: Insertion

Example 1:

So now, follow the "Practical Rules" to rebalance this tree

50

AVL Trees: Insertion

Example 1:

So now, follow the "Practical Rules" to rebalance this tree

50

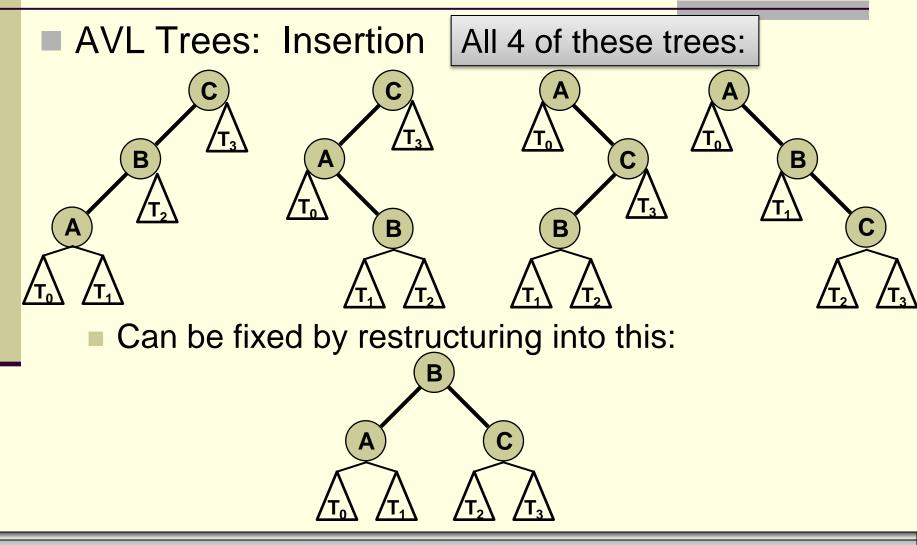
AVL Trees: Insertion

Example 1:

So now, follow the "Practical Rules" to rebalance this tree

50

- 4. Label those 'A, B, C' nodes appropriately (and subtrees)
 - Remember, of the three nodes:
 - The smallest node should be labeled 'A'
 - > The middle node should be labeled 'B'
 - > The largest node should be labeled 'C'

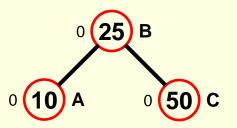

AVL Trees: Insertion

Example 1:
²50
¹25
⁰10

So now, follow the "Practical Rules" to rebalance this tree

- 4. Label those 'A, B, C' nodes appropriately (and subtrees)
 - Remember, of the three nodes:
 - The smallest node should be labeled 'A'
 - > The middle node should be labeled 'B'
 - > The largest node should be labeled 'C'

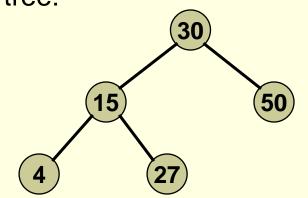
- Example 1:
 ²50 c
 ¹25 B
 ⁰10 10 C
 - So now, follow the "Practical Rules" to rebalance this tree
 - 5. <u>Restructure</u> those three nodes (and their subtrees)
 - Reminder...


© Jonathan Cazalas

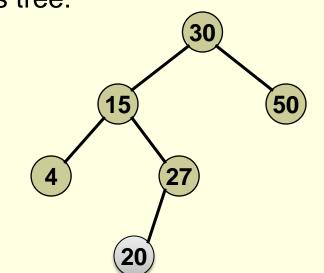
AVL Trees: Insertion Revisited

page 26

- Example 1:
 ²50 c
 ¹25 B
 ⁰10 10 C
 - So now, follow the "Practical Rules" to rebalance this tree
 - 5. <u>Restructure</u> those three nodes (and their subtrees)
 - So we simply restructure the tree according to the previous slide


- AVL Trees: Insertion
 - Example 1:

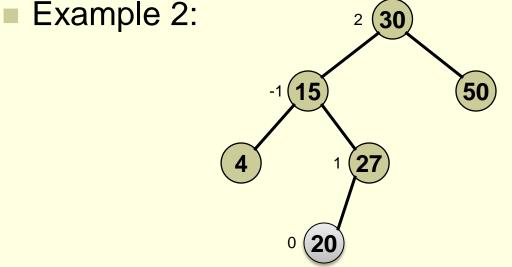
So now, follow the "Practical Rules" to rebalance this tree


- 5. <u>Restructure</u> those three nodes (and their subtrees)
 - So we simply restructure the tree according to the previous slide

- AVL Trees: Insertion
 - Example 2:
 - Given this tree:

- We insert a node with the value 20
- This node clearly goes to the left of 27

- AVL Trees: Insertion
 - Example 2:
 - Given this tree:



So now, follow the "Practical Rules" to rebalance this tree

AVL Trees: Insertion Revisited

- More <u>Practical Rules</u>:
 - Insert a node following rules of BST insertion
 - Once you insert a new node, perform the following:
 - 1. Start finding the balance factors of ALL nodes <u>along the</u> <u>path from the insertion point to the root</u>
 - 2. <u>As soon as</u> you find the first node out of balance, <u>mark</u> <u>that node</u> as one of your three "restructuring nodes"
 - 3. Then, take <u>two steps</u>, back <u>down</u>, towards the insertion point and <u>mark those two nodes</u> as well.
 - 4. <u>Label</u> those 'A, B, C' nodes appropriately (and subtrees)
 - 5. <u>Restructure</u> those three nodes (and their subtrees)

AVL Trees: Insertion

So now, follow the "Practical Rules" to rebalance this tree

1. Start finding the balance factors of ALL nodes <u>along the</u> <u>path from the insertion point to the root</u>

AVL Trees: Insertion Example 2: 2 30

So now, follow the "Practical Rules" to rebalance this tree

2. <u>As soon as</u> you find the first node out of balance, <u>mark</u> <u>that node</u> as one of your three "restructuring nodes

AVL Trees: Insertion Example 2: ² (30) ⁻¹ (15) ⁻¹

So now, follow the "Practical Rules" to rebalance this tree

2. <u>As soon as</u> you find the first node out of balance, <u>mark</u> <u>that node</u> as one of your three "restructuring nodes

AVL Trees: Insertion Example 2: ² 30 ⁻¹ 15 ⁵⁰ ⁻¹ 127 ⁻¹ 20

So now, follow the "Practical Rules" to rebalance this tree

AVL Trees: Insertion Example 2: 2 30 -1 15 50 4 1 27 0 20

So now, follow the "Practical Rules" to rebalance this tree

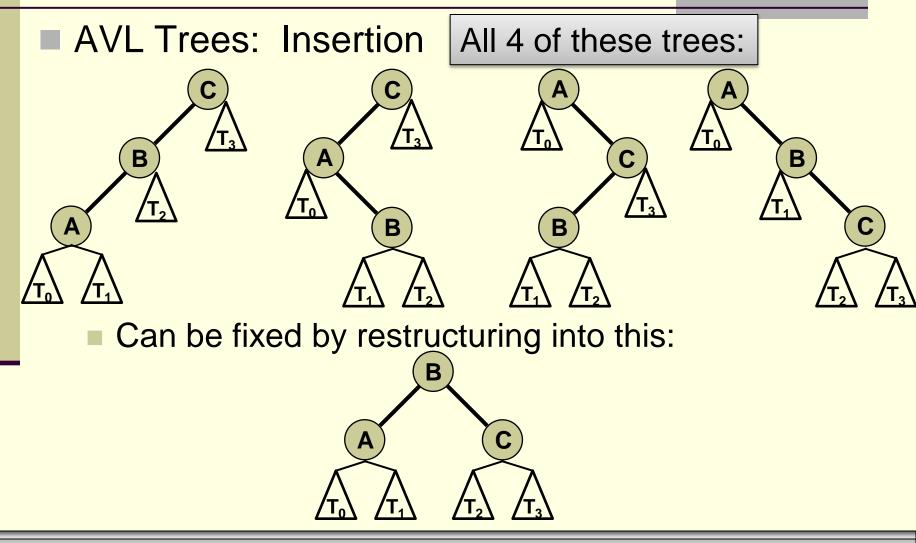
AVL Trees: Insertion Example 2: 2 30 -1 15 50 4 1 27 0 20

So now, follow the "Practical Rules" to rebalance this tree

3. Then, take <u>two steps</u>, back <u>down</u>, towards the insertion point and <u>mark those two nodes</u> as well.

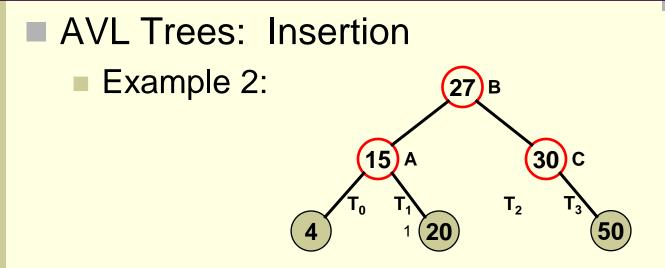
AVL Trees: Insertion Example 2: ² 30 ⁻¹ 15 ⁻¹ 15 ⁻¹ 15 ⁻¹ 127 ⁻¹ 127

So now, follow the "Practical Rules" to rebalance this tree


4. Label those 'A, B, C' nodes appropriately (and subtrees)

AVL Trees: Insertion Example 2: August 2 (30 c) Aug

- 4. Label those 'A, B, C' nodes appropriately (and subtrees)
 - > Don't forget to label the subtrees from smallest to largest (from T_0 to T_3)


AVL Trees: Insertion Example 2: ² (30 c) ⁻¹ (15 A) ⁻¹

- 5. <u>Restructure</u> those three nodes (and their subtrees)
- Reminder...

AVL Trees: Insertion Example 2: ² (30 c) ⁻¹ (15 A) ⁻¹

- 5. <u>Restructure</u> those three nodes (and their subtrees)
 - So we simply restructure the tree according to the previous slide

- 5. <u>Restructure</u> those three nodes (and their subtrees)
 - So we simply restructure the tree according to the previous slide

Brief Interlude: FAIL Picture

© Jonathan Cazalas

G


- More examples given in class!
- See PDF of Arup's Insertion notes
 maybe not the most exciting notes
 but it has the same examples

WASN'T ΤΗΑΤ **MOMENTOUS!**

© Jonathan Cazalas

Daily Demotivator

Computer Science Department University of Central Florida

COP 3502 – Computer Science I