Binary Heaps & Priority Queues

Computer Science Department University of Central Florida

COP 3502 – Computer Science I

Binary Heaps

Heap:

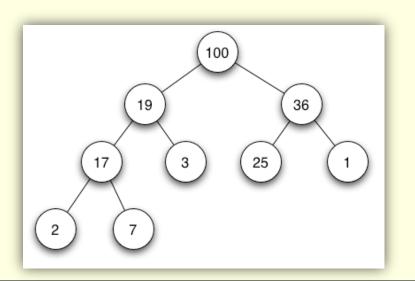
- A heap is an Abstract Data Type
 - Just like stacks and queues are ADTs
 - Meaning, we will define certain behaviors that dictate whether or not a certain data structure is a heap
- So what is a heap?
 - More specifically, what does it do or how do they work?
- A heap looks similar to a tree
 - But a heap has a specific property/invariant that each node in the tree MUST follow

Binary Heaps

Heap:

In a heap, all values stored in the subtree of a given node <u>must be</u> less than or equal to the value stored in that node

This is known as the <u>heap property</u>



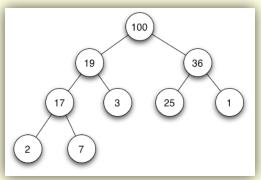
And it is this property that makes a heap a heap!

Binary Heaps

Heap:

In a heap, all values stored in the subtree of a given node <u>must be</u> less than or equal to the value stored in that node

- If B is a child of node A, then the value of node A must be greater than or equal to the value of node B
 - This is a called a <u>Max-Heap</u>
 - Where the root stores the highest value of any given subtree

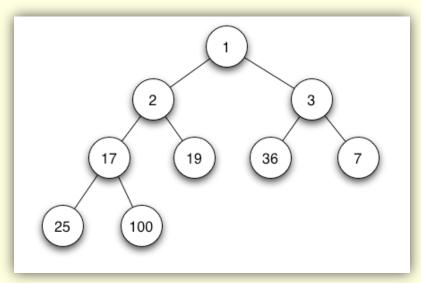


Binary Heaps

Heap:

Alternatively, if all values stored in the subtree of a given node are greater than or equal to the value stored in that node

This is called a <u>Min-Heap</u> (where root is smallest value)



Binary Heaps

- What we just described was a basic Heap
- Now for a heap to be <u>Binary Heap</u>, it must adhere to one other property:
- The Shape Property:
 - The heap must be a <u>complete binary tree</u>
 - Meaning, all levels of the tree, except possibly the last one, must be fully filled
 - And if the last level is not complete, the nodes of the level are filled from left to right
 - ***And it just so happens that the previous pictures shown were all examples of binary heaps

 Building a Complete Binary Tree:

Root

When a complete binary tree is built, its first node must be the root.

© Jonathan Cazalas

Binary Heaps & Priority Queues

page 7

 Building a Complete Binary Tree:

Left child of the root

The second node is always the left child of the root.

© Jonathan Cazalas

Binary Heaps & Priority Queues

Right child

of the

root

Binary Heaps

 Building a Complete Binary Tree:

> The third node is always the right child of the root.

© Jonathan Cazalas

Binary Heaps & Priority Queues

page 9

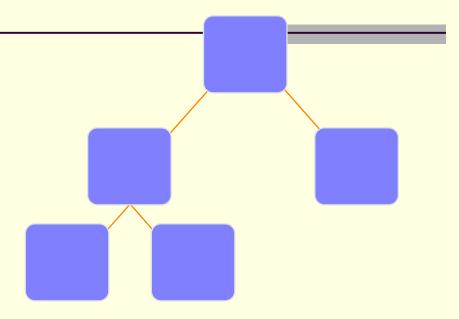
 Building a Complete Binary Tree:

> The next nodes always fill the next level from left-toright.

© Jonathan Cazalas

Binary Heaps & Priority Queues

 Building a Complete Binary Tree:

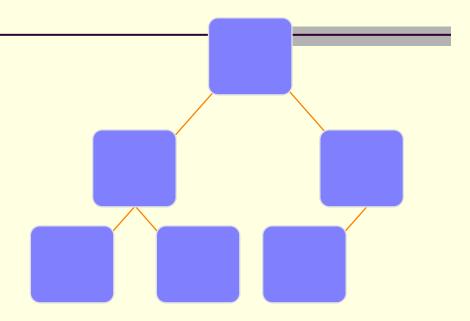


The next nodes always fill the next level from left-toright.

© Jonathan Cazalas

Binary Heaps & Priority Queues

 Building a Complete Binary Tree:



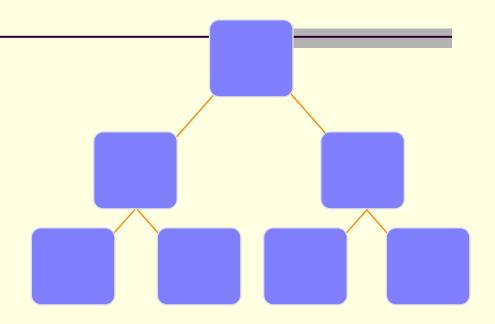
The next nodes always fill the next level from left-toright.

© Jonathan Cazalas

Binary Heaps & Priority Queues

page 12

 Building a Complete Binary Tree:



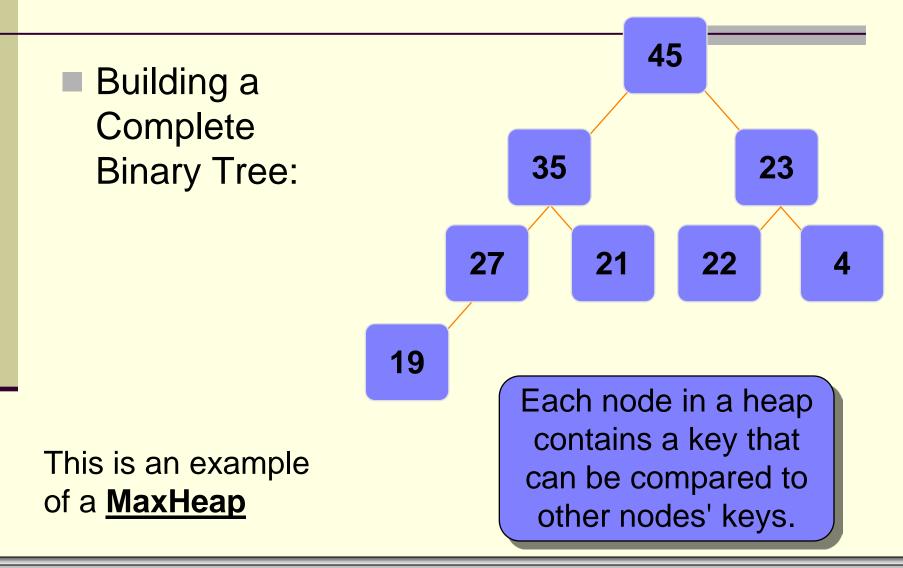
The next nodes always fill the next level from left-toright.

© Jonathan Cazalas

Binary Heaps & Priority Queues

page 13

 Building a Complete Binary Tree:



Binary Heaps & Priority Queues

Binary Heaps

- New nodes are always added at the lowest level
 - And are inserted from left to right
- There is no particular relationship among the data items in nodes on any given level
 - Even if the nodes have the same parent
 - Example: the right node does not necessarily have to be larger than the left node (as in BSTs)
- The only ordering property for heaps is the one already defined
 - Root of any given subtree is either largest or smallest element in that tree...either a max-heap or a min-heap

Binary Heaps

- The tree never becomes unbalanced
- A heap is not a sorted structure
 - But it can be regarded as partially ordered
 - Since the minimum value is always at the root
- A given set of data can be formed into many different heaps
 - Depending on the order in which the data arrives

Binary Heaps

- "Okay, great...whupdedoo"
- Yeah, we now know what a binary heap is
- But how does it help us?
- What is its purpose?
- Binary heaps are usually used to implement another abstract data type:
 - A priority queue

Binary Heaps

Priority Queues:

- A priority queue is basically what it sounds like
 - it is a queue
 - Which means that we will have a line
 - But the first person in line is not necessarily the first person out of line
 - Rather, the <u>queuing order is based on a priority</u>
 - Meaning, if one person has a higher priority, that person goes right to the front
- Examples:
 - Emergency room:
 - Higher priority injuries are taken first

- Priority Queues:
 - The model:
 - Requests are inserted in the order of arrival
 - The request with the highest priority is processed first
 - Meaning, it is removed from the queue
 - Priority can be indicated by a number
 - But you have to determine what has most priority
 - Maybe your application results in smallest number having the highest priority
 - Maybe the largest number has the highest priority
 - This really isn't important and is an implementation detail

Priority Queues:

- So how could we implement a priority queue?
 - Sorted Linked List
 - Higher priority items are ALWAYS at the front of the list
 - Example: a check out line in a supermarket
 - But people who are more important can cut in line
 - Running Time:
 - O(n) insertion time: you have to search through, potentially, n nodes to find the correct spot (based on priority)
 - O(1) deletion time (finding the node with the highest priority) since the highest priority node is first node of the list

Priority Queues:

- So how could we implement a priority queue?
 - Unsorted Linked List
 - Keep a list of elements as a queue
 - To add an element, append it to the end
 - To remove an element, search through all the elements for the one with the highest priority
 - Running Time:
 - O(1) insertion time: you simple add to the end of the list
 - O(n) deletion time: you have to, potentially, search through all n nodes to find the correct node to delete

Binary Heaps

Priority Queues:

So how could we implement a priority queue?

Correct Method: Binary Heap!

- We use a binary heap to implement a priority queue
 - So we are using one abstract data type to implement another abstract data type
- Running time ends up being <u>O(logn) for both insertion</u> and deletion into a Heap
- FindMin (finding the minimum) ends up being O(1)
 - cuz we just find (look at) the root, which is O(1)
- So now we look at how to maintain a heap/priority queue
 - How to insert into and delete from a heap
 - And how to build a heap

Brief Interlude: FAIL Picture

© Jonathan Cazalas

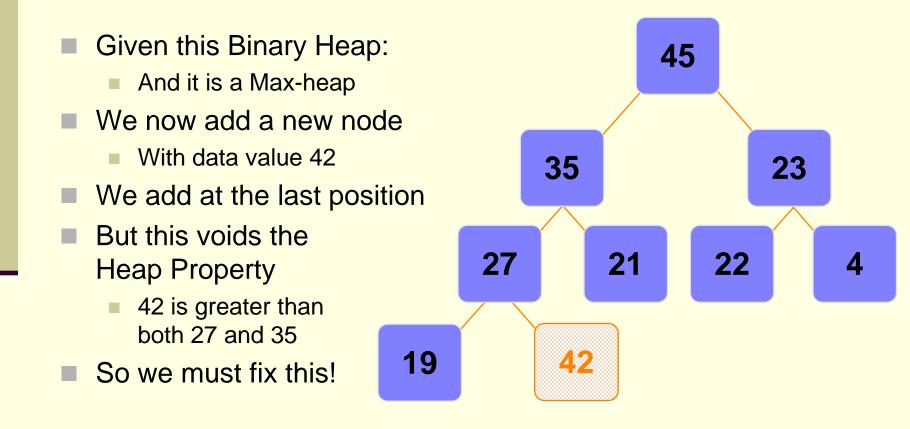
Binary Heaps & Priority Queues

Adding Nodes to a Binary Heap

Assume the existence of a current heap

Remember:

- The binary heap MUST follow the Shape property
 - The tree must be balanced
- Insertions will be made in the <u>next available spot</u>
 - Meaning, at the last level
 - and at the next spot, going from left to right
- But what will most likely happen when you do this?
 - The Heap property will NOT be maintained



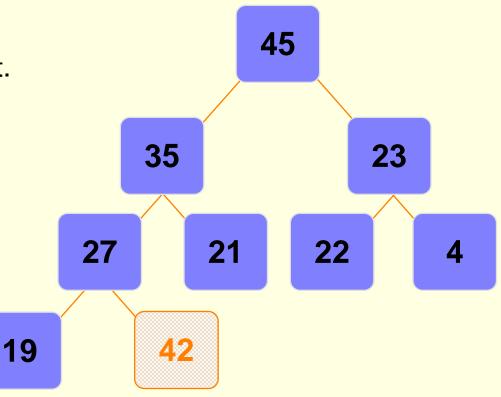
Binary Heaps

Adding Nodes to a Binary Heap

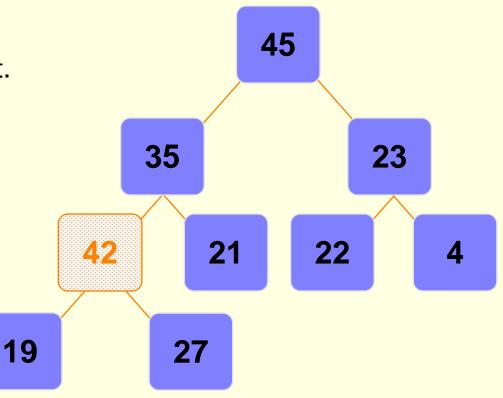
Percolate Up procedure

- In order to fix the out of place node, we must follow the following "Percolate Up" procedure
 - If the parent of the newly inserted node is less than the newly inserted node (this is clearly for a "max heap")
 - Then SWAP them
 - This counts as one "Percolate Up" step
 - Continue this process until the new node finds the correct spot
 - Continue SWAPPING until the parent of the new node has a value that is greater than the new node
 - Or if the new node reaches all the way to the root
 - This is now the new "home" for this node

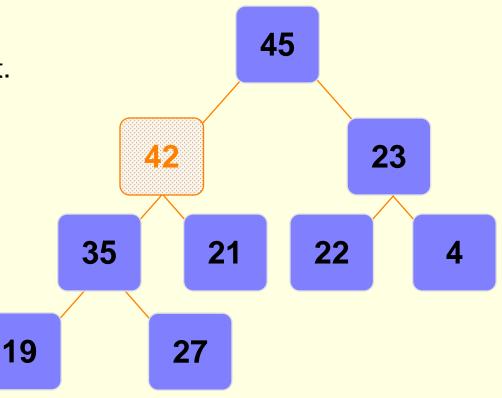
- Put the new node in the next available spot.
- Push the new node upward, swapping with its parent until the new node reaches an acceptable location.



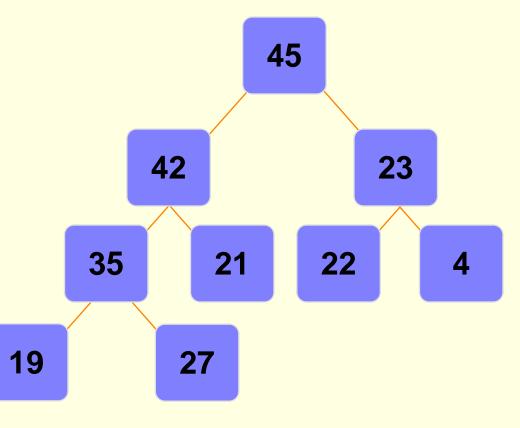
- Put the new node in the next available spot.
- Push the new node upward, swapping with its parent until the new node reaches an acceptable location.



- Put the new node in the next available spot.
- Push the new node upward, swapping with its parent until the new node reaches an acceptable location.



- 42 has now reached an acceptable location
- Its parent (node 45) has a value that is greater than 42
- This process is called <u>Percolate Up</u>
- Other books call it <u>Heapification Upward</u>
- What is important is how it works



Binary Heaps

- Percolate Up procedure
 - What is the Big-O running time of insertion into a heap?
 - The actual insertion is simply O(1)
 - We simply insert at the last position
 - And you will see (in a bit) how we quick access to this position
 - But when we do this,
 - We need to fix the tree to maintain the Heap Property
 - Percolate Up takes O(logn) time
 - Why?
 - Because the height of the tree is log n
 - Worst case scenario is having to SWAP all the way to the root
 - So the overall running time of an insertion is O(logn)

Deleting Nodes from a Binary Heap

- We will write a function called deleteMin (or deleteMax)
- Which node will we ALWAYS be deleting?
- Remember:
 - We are using a Heap to implement a priority queue!
 - And in a priority queue, we always delete the first element
 - The one with the highest priority
- So we will ALWAYS be deleting the ROOT of the tree
 - So this is quite easy!
 - deleteMin (or deleteMax for a Max Heap) simply deletes the root and returns its value to main

Deleting Nodes from a Binary Heap

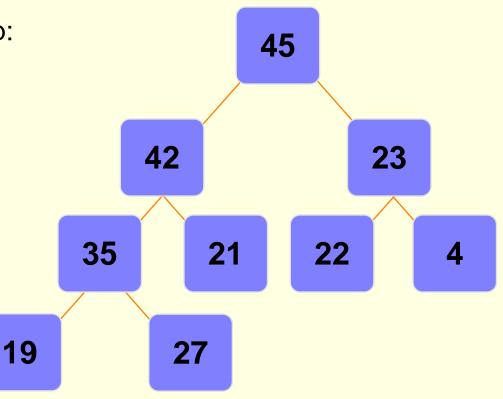
- We will write a function called deleteMin
 - deleteMin simply deletes the root and returns its value to main
- But what will happen when we delete the root?
 - We will have a tree with no root!
 - The root will be missing
- So clearly this needs to be fixed

This process is for a Max-heap

- Deleting Nodes from a Binary Heap
 - Fixing the tree after deleting the root:
 - 1) Copy the last node of the tree into the position of the root
 - 2) Then remove that last node (to avoid duplicates)
 - Note: The new root is almost assuredly out of place
 - Most likely, one, or both, of its children will have a greater value than it
 - If so:
 - 3) Swap the new root node with the **<u>greater</u>** of its child nodes
 - This is considered one "<u>Percolate Down</u>" step
 - Continue this process until the "last node" ends up in a spot where its children have values smaller than it
 - Neither child can have a value greater than it

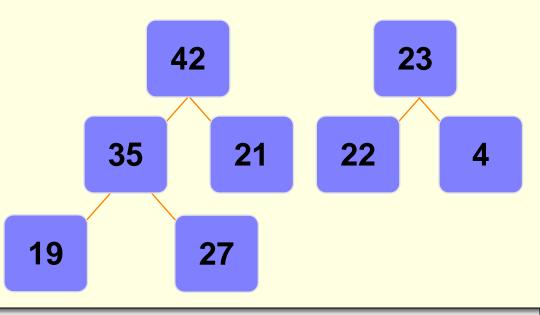
Deleting Nodes from a Binary Heap

- Given the following Heap:
- We perform a delete
- Which means 45 will get deleted

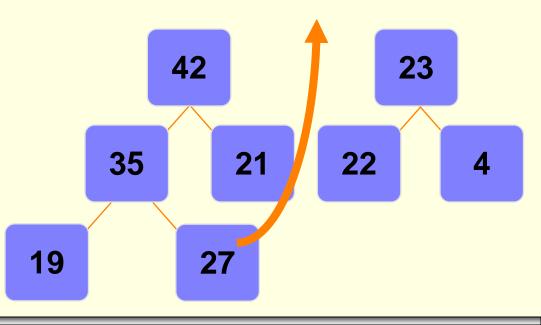


Deleting Nodes from a Binary Heap

- Given the following Heap:
- We perform a delete
- Which means 45 will get deleted

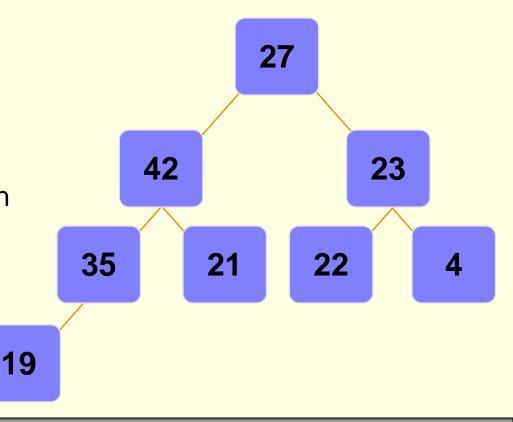


- Deleting Nodes from a Binary Heap
- The last node now gets moved to the root
- So 27 goes to the root



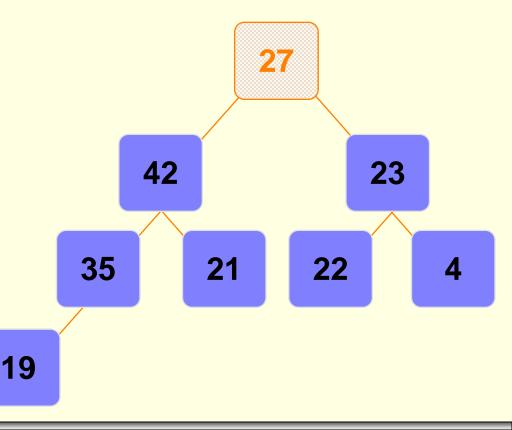
Deleting Nodes from a Binary Heap

- The last node now gets moved to the root
- So 27 goes to the root
- 27 is now out of place
- We must Percolate Down



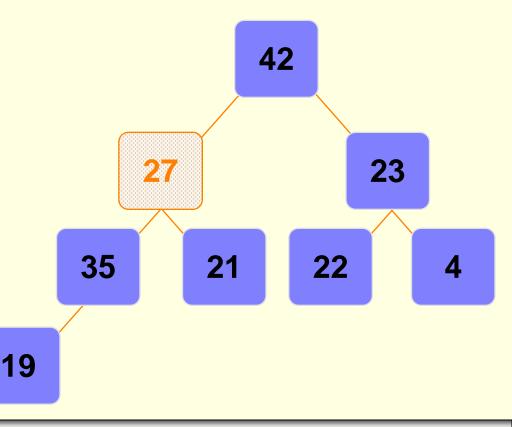
Deleting Nodes from a Binary Heap

- Push the out-of-place node downward,
 - swapping with its <u>larger</u> child
 - until the out-of-place node reaches an acceptable location



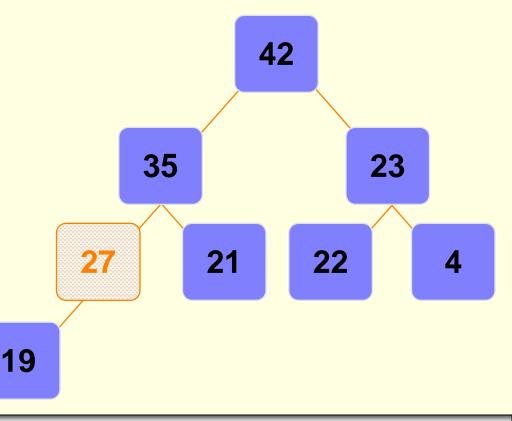
Deleting Nodes from a Binary Heap

- Push the out-of-place node downward,
 - swapping with its <u>larger</u> child
 - until the out-of-place node reaches an acceptable location



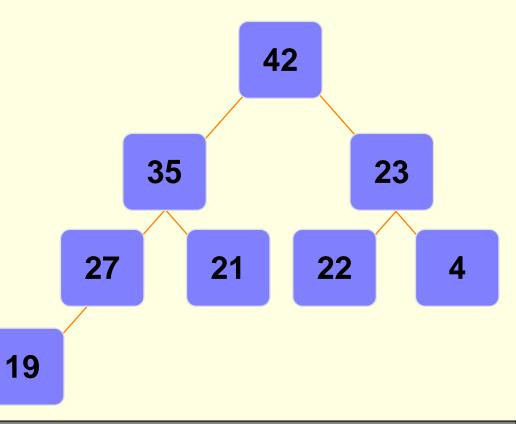
Deleting Nodes from a Binary Heap

- Push the out-of-place node downward,
 - swapping with its <u>larger</u> child
 - until the out-of-place node reaches an acceptable location



Deleting Nodes from a Binary Heap

- 27 has reached an acceptable location
- Its lone child (19) has a value that is less than 27
- So we stop the Percolate Down procedure at this point

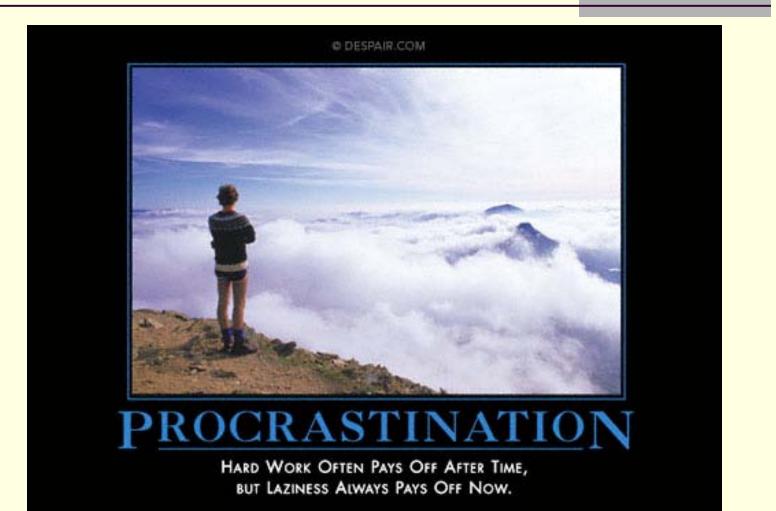


Deleting Nodes from a Binary Heap

- What is the Big-O running time of deletion from a heap?
- The actual deletion itself is O(1)
 - cause the minimum value is at the root
 - and we can delete the root of a tree in O(1) time
- But now we need to fix the tree
 - Moving the last node to the root is an O(1) step
 - But then we need to Percolate Down
- Percolate Down takes O(logn)
 - Why?
 - Because the height of the tree is log n
 - And the worst case scenario is having to SWAP all the way to the farthest leaf

So the overall running time of a deletion is O(logn)

Daily Demotivator



© Jonathan Cazalas

Binary Heaps & Priority Queues

