
Computer Science Department
University of Central Florida

Binary Heaps &
Priority Queues

COP 3502 – Computer Science I

Binary Heaps & Priority Queues page 2© Jonathan Cazalas

Binary Heaps

 Heap:
 A heap is an Abstract Data Type

 Just like stacks and queues are ADTs
 Meaning, we will define certain behaviors that dictate

whether or not a certain data structure is a heap

 So what is a heap?
 More specifically, what does it do or how do they work?

 A heap looks similar to a tree
 But a heap has a specific property/invariant that each

node in the tree MUST follow

Binary Heaps & Priority Queues page 3© Jonathan Cazalas

Binary Heaps

 Heap:
 In a heap, all values stored in the subtree of a

given node must be less than or equal to the
value stored in that node
 This is known as the heap property

And it is this
property that

makes a heap
a heap!

Binary Heaps & Priority Queues page 4© Jonathan Cazalas

Binary Heaps

 Heap:
 In a heap, all values stored in the subtree of a

given node must be less than or equal to the
value stored in that node
 If B is a child of node A, then the value of node A must

be greater than or equal to the value of node B
 This is a called a Max-Heap

 Where the root stores the highest value of any given subtree

Binary Heaps & Priority Queues page 5© Jonathan Cazalas

Binary Heaps

 Heap:
 Alternatively, if all values stored in the subtree of

a given node are greater than or equal to the
value stored in that node
 This is called a Min-Heap (where root is smallest value)

Binary Heaps & Priority Queues page 6© Jonathan Cazalas

Binary Heaps

 Binary Heap:
 What we just described was a basic Heap
 Now for a heap to be Binary Heap, it must adhere

to one other property:
 The Shape Property:

 The heap must be a complete binary tree
 Meaning, all levels of the tree, except possibly the last

one, must be fully filled
 And if the last level is not complete, the nodes of the

level are filled from left to right
 ***And it just so happens that the previous pictures shown

were all examples of binary heaps

Binary Heaps & Priority Queues page 7© Jonathan Cazalas

Binary Heaps

 Building a
Complete
Binary Tree:

When a complete
binary tree is built,

its first node must be
the root.

Root

Binary Heaps & Priority Queues page 8© Jonathan Cazalas

Binary Heaps

 Building a
Complete
Binary Tree:

Left child
of the
root

The second node is
always the left child

of the root.

Binary Heaps & Priority Queues page 9© Jonathan Cazalas

Binary Heaps

 Building a
Complete
Binary Tree:

Right child
of the

root

The third node is
always the right child

of the root.

Binary Heaps & Priority Queues page 10© Jonathan Cazalas

Binary Heaps

 Building a
Complete
Binary Tree:

The next nodes
always fill the next
level from left-to-

right.

Binary Heaps & Priority Queues page 11© Jonathan Cazalas

Binary Heaps

 Building a
Complete
Binary Tree:

The next nodes
always fill the next
level from left-to-

right.

Binary Heaps & Priority Queues page 12© Jonathan Cazalas

Binary Heaps

 Building a
Complete
Binary Tree:

The next nodes
always fill the next
level from left-to-

right.

Binary Heaps & Priority Queues page 13© Jonathan Cazalas

Binary Heaps

 Building a
Complete
Binary Tree:

The next nodes
always fill the next
level from left-to-

right.

Binary Heaps & Priority Queues page 14© Jonathan Cazalas

Binary Heaps

 Building a
Complete
Binary Tree:

Binary Heaps & Priority Queues page 15© Jonathan Cazalas

Binary Heaps

 Building a
Complete
Binary Tree:

Each node in a heap
contains a key that
can be compared to
other nodes' keys.

19

4222127

23

45

35

This is an example
of a MaxHeap

Binary Heaps & Priority Queues page 16© Jonathan Cazalas

Binary Heaps

 Binary Heap:
 New nodes are always added at the lowest level

 And are inserted from left to right

 There is no particular relationship among the data
items in nodes on any given level
 Even if the nodes have the same parent
 Example: the right node does not necessarily have to

be larger than the left node (as in BSTs)

 The only ordering property for heaps is the one
already defined
 Root of any given subtree is either largest or smallest

element in that tree…either a max-heap or a min-heap

Binary Heaps & Priority Queues page 17© Jonathan Cazalas

Binary Heaps

 Binary Heap:
 The tree never becomes unbalanced
 A heap is not a sorted structure

 But it can be regarded as partially ordered
 Since the minimum value is always at the root

 A given set of data can be formed into many
different heaps
 Depending on the order in which the data arrives

Binary Heaps & Priority Queues page 18© Jonathan Cazalas

Binary Heaps

 Binary Heap:
 “Okay, great…whupdedoo”
 Yeah, we now know what a binary heap is
 But how does it help us?
 What is its purpose?

 Binary heaps are usually used to implement
another abstract data type:
 A priority queue

Binary Heaps & Priority Queues page 19© Jonathan Cazalas

Binary Heaps

 Priority Queues:
 A priority queue is basically what it sounds like

 it is a queue
 Which means that we will have a line
 But the first person in line is not necessarily the first

person out of line
 Rather, the queuing order is based on a priority
 Meaning, if one person has a higher priority, that person

goes right to the front

 Examples:
 Emergency room:

 Higher priority injuries are taken first

Binary Heaps & Priority Queues page 20© Jonathan Cazalas

Binary Heaps

 Priority Queues:
 The model:

 Requests are inserted in the order of arrival
 The request with the highest priority is processed first

 Meaning, it is removed from the queue
 Priority can be indicated by a number

 But you have to determine what has most priority
 Maybe your application results in smallest number having the

highest priority
 Maybe the largest number has the highest priority

 This really isn’t important and is an implementation detail

Binary Heaps & Priority Queues page 21© Jonathan Cazalas

Binary Heaps

 Priority Queues:
 So how could we implement a priority queue?

 Sorted Linked List
 Higher priority items are ALWAYS at the front of the list
 Example: a check out line in a supermarket

 But people who are more important can cut in line
 Running Time:

 O(n) insertion time: you have to search through, potentially, n
nodes to find the correct spot (based on priority)

 O(1) deletion time (finding the node with the highest priority)
since the highest priority node is first node of the list

Binary Heaps & Priority Queues page 22© Jonathan Cazalas

Binary Heaps

 Priority Queues:
 So how could we implement a priority queue?

 Unsorted Linked List
 Keep a list of elements as a queue
 To add an element, append it to the end
 To remove an element, search through all the elements for

the one with the highest priority
 Running Time:

 O(1) insertion time: you simple add to the end of the list
 O(n) deletion time: you have to, potentially, search through all

n nodes to find the correct node to delete

Binary Heaps & Priority Queues page 23© Jonathan Cazalas

Binary Heaps

 Priority Queues:
 So how could we implement a priority queue?

 Correct Method: Binary Heap!
 We use a binary heap to implement a priority queue

 So we are using one abstract data type to implement another
abstract data type

 Running time ends up being O(logn) for both insertion
and deletion into a Heap

 FindMin (finding the minimum) ends up being O(1)
 cuz we just find (look at) the root, which is O(1)

 So now we look at how to maintain a heap/priority queue
 How to insert into and delete from a heap
 And how to build a heap

Binary Heaps & Priority Queues page 24© Jonathan Cazalas

Brief Interlude: FAIL Picture

Binary Heaps & Priority Queues page 25© Jonathan Cazalas

Binary Heaps

 Adding Nodes to a Binary Heap
 Assume the existence of a current heap
 Remember:

 The binary heap MUST follow the Shape property
 The tree must be balanced

 Insertions will be made in the next available spot
 Meaning, at the last level
 and at the next spot, going from left to right

 But what will most likely happen when you do
this?
 The Heap property will NOT be maintained

Binary Heaps & Priority Queues page 26© Jonathan Cazalas

 Adding Nodes to a Binary Heap

 Given this Binary Heap:
 And it is a Max-heap

 We now add a new node
 With data value 42

 We add at the last position
 But this voids the

Heap Property
 42 is greater than

both 27 and 35
 So we must fix this! 42

Binary Heaps

19

4222127

23

45

35

Binary Heaps & Priority Queues page 27© Jonathan Cazalas

Binary Heaps

 Adding Nodes to a Binary Heap
 Percolate Up procedure

 In order to fix the out of place node, we must follow the
following “Percolate Up” procedure
 If the parent of the newly inserted node is less than the newly

inserted node (this is clearly for a “max heap”)
 Then SWAP them

 This counts as one “Percolate Up” step
 Continue this process until the new node finds the correct

spot
 Continue SWAPPING until the parent of the new node

has a value that is greater than the new node
 Or if the new node reaches all the way to the root
 This is now the new “home” for this node

Binary Heaps & Priority Queues page 28© Jonathan Cazalas

 Adding Nodes to a Binary Heap

 Put the new node
in the next available spot.

 Push the new node
upward, swapping
with its parent until
the new node reaches
an acceptable location.

42

Binary Heaps

19

4222127

23

45

35

Binary Heaps & Priority Queues page 29© Jonathan Cazalas

 Adding Nodes to a Binary Heap

 Put the new node
in the next available spot.

 Push the new node
upward, swapping
with its parent until
the new node reaches
an acceptable location.

19

4222142

23

45

35

27

Binary Heaps

Binary Heaps & Priority Queues page 30© Jonathan Cazalas

19

4222135

23

45

42

27

 Adding Nodes to a Binary Heap

 Put the new node
in the next available spot.

 Push the new node
upward, swapping
with its parent until
the new node reaches
an acceptable location.

Binary Heaps

Binary Heaps & Priority Queues page 31© Jonathan Cazalas

 Adding Nodes to a Binary Heap

 42 has now reached
an acceptable location

 Its parent (node 45) has
a value that is greater
than 42

 This process is called
Percolate Up

 Other books call it
Heapification Upward

 What is important
is how it works

19

4222135

23

45

42

27

Binary Heaps

Binary Heaps & Priority Queues page 32© Jonathan Cazalas

Binary Heaps

 Adding Nodes to a Binary Heap
 Percolate Up procedure

 What is the Big-O running time of insertion into a heap?
 The actual insertion is simply O(1)

 We simply insert at the last position
 And you will see (in a bit) how we quick access to this position

 But when we do this,
 We need to fix the tree to maintain the Heap Property

 Percolate Up takes O(logn) time
 Why?
 Because the height of the tree is log n
 Worst case scenario is having to SWAP all the way to the root

 So the overall running time of an insertion is O(logn)

Binary Heaps & Priority Queues page 33© Jonathan Cazalas

Binary Heaps

 Deleting Nodes from a Binary Heap
 We will write a function called deleteMin (or deleteMax)
 Which node will we ALWAYS be deleting?
 Remember:

 We are using a Heap to implement a priority queue!
 And in a priority queue, we always delete the first element
 The one with the highest priority

 So we will ALWAYS be deleting the ROOT of the
tree
 So this is quite easy!
 deleteMin (or deleteMax for a Max Heap) simply deletes

the root and returns its value to main

Binary Heaps & Priority Queues page 34© Jonathan Cazalas

Binary Heaps

 Deleting Nodes from a Binary Heap
 We will write a function called deleteMin

 deleteMin simply deletes the root and returns its value to
main

 But what will happen when we delete the root?
 We will have a tree with no root!
 The root will be missing

 So clearly this needs to be fixed

Binary Heaps & Priority Queues page 35© Jonathan Cazalas

Binary Heaps

 Deleting Nodes from a Binary Heap
 Fixing the tree after deleting the root:
1) Copy the last node of the tree into the position of the root
2) Then remove that last node (to avoid duplicates)

 Note: The new root is almost assuredly out of place
 Most likely, one, or both, of its children will have a greater

value than it
 If so:

3) Swap the new root node with the greater of its child nodes
 This is considered one “Percolate Down” step

 Continue this process until the “last node” ends up in a
spot where its children have values smaller than it
 Neither child can have a value greater than it

This process is
for a Max-heap

Binary Heaps & Priority Queues page 36© Jonathan Cazalas

Binary Heaps

 Deleting Nodes from a Binary Heap

 Given the following Heap:
 We perform a delete
 Which means 45 will

get deleted

19

4222135

23

45

42

27

Binary Heaps & Priority Queues page 37© Jonathan Cazalas

Binary Heaps

 Deleting Nodes from a Binary Heap

 Given the following Heap:
 We perform a delete
 Which means 45 will

get deleted

19

4222135

2342

27

Binary Heaps & Priority Queues page 38© Jonathan Cazalas

Binary Heaps

 Deleting Nodes from a Binary Heap

 The last node now gets
moved to the root

 So 27 goes to the root

19

4222135

2342

27

Binary Heaps & Priority Queues page 39© Jonathan Cazalas

Binary Heaps

 Deleting Nodes from a Binary Heap

 The last node now gets
moved to the root

 So 27 goes to the root
 27 is now out of place
 We must Percolate Down

19

4222135

23

27

42

Binary Heaps & Priority Queues page 40© Jonathan Cazalas

19

4222135

23

27

42

Binary Heaps

 Deleting Nodes from a Binary Heap

 Percolate Down:
 Push the out-of-place

node downward,
 swapping with its

larger child
 until the out-of-place

node reaches an
acceptable location

Binary Heaps & Priority Queues page 41© Jonathan Cazalas

 Deleting Nodes from a Binary Heap

 Percolate Down:
 Push the out-of-place

node downward,
 swapping with its

larger child
 until the out-of-place

node reaches an
acceptable location

19

4222135

23

42

27

Binary Heaps

Binary Heaps & Priority Queues page 42© Jonathan Cazalas

19

4222127

23

42

35

 Deleting Nodes from a Binary Heap

 Percolate Down:
 Push the out-of-place

node downward,
 swapping with its

larger child
 until the out-of-place

node reaches an
acceptable location

Binary Heaps

Binary Heaps & Priority Queues page 43© Jonathan Cazalas

 Deleting Nodes from a Binary Heap

 Percolate Down:
 27 has reached an

acceptable location
 Its lone child (19) has

a value that is less
than 27

 So we stop the
Percolate Down
procedure at
this point 19

4222127

23

42

35

Binary Heaps

Binary Heaps & Priority Queues page 44© Jonathan Cazalas

Binary Heaps

 Deleting Nodes from a Binary Heap
 What is the Big-O running time of deletion from a heap?
 The actual deletion itself is O(1)

 cause the minimum value is at the root
 and we can delete the root of a tree in O(1) time

 But now we need to fix the tree
 Moving the last node to the root is an O(1) step
 But then we need to Percolate Down

 Percolate Down takes O(logn)
 Why?

 Because the height of the tree is log n
 And the worst case scenario is having to SWAP all the way to

the farthest leaf

 So the overall running time of a deletion is O(logn)

Binary Heaps & Priority Queues page 45© Jonathan Cazalas

Daily Demotivator

	Binary Heaps &�Priority Queues
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Brief Interlude: FAIL Picture
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Binary Heaps
	Daily Demotivator

