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Binary Heaps

 Heap:
 A heap is an Abstract Data Type

 Just like stacks and queues are ADTs
 Meaning, we will define certain behaviors that dictate 

whether or not a certain data structure is a heap

 So what is a heap?
 More specifically, what does it do or how do they work?

 A heap looks similar to a tree
 But a heap has a specific property/invariant that each 

node in the tree MUST follow
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Binary Heaps

 Heap:
 In a heap, all values stored in the subtree of a 

given node must be less than or equal to the 
value stored in that node
 This is known as the heap property

And it is this 
property that 

makes a heap 
a heap!
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Binary Heaps

 Heap:
 In a heap, all values stored in the subtree of a 

given node must be less than or equal to the 
value stored in that node
 If B is a child of node A, then the value of node A must 

be greater than or equal to the value of node B
 This is a called a Max-Heap

 Where the root stores the highest value of any given subtree
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Binary Heaps

 Heap:
 Alternatively, if all values stored in the subtree of 

a given node are greater than or equal to the 
value stored in that node
 This is called a Min-Heap (where root is smallest value)
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Binary Heaps

 Binary Heap:
 What we just described was a basic Heap
 Now for a heap to be Binary Heap, it must adhere 

to one other property:
 The Shape Property:

 The heap must be a complete binary tree
 Meaning, all levels of the tree, except possibly the last 

one, must be fully filled
 And if the last level is not complete, the nodes of the 

level are filled from left to right
 ***And it just so happens that the previous pictures shown 

were all examples of binary heaps
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Binary Heaps

 Building a
Complete
Binary Tree:

When a complete
binary tree is built,

its first node must be
the root.

Root
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Binary Heaps

 Building a
Complete
Binary Tree:

Left child
of the
root

The second node is
always the left child

of the root.
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Binary Heaps

 Building a
Complete
Binary Tree:

Right child
of the

root

The third node is
always the right child

of the root.
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Binary Heaps

 Building a
Complete
Binary Tree:

The next nodes
always fill the next
level from left-to-

right.
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Binary Heaps

 Building a
Complete
Binary Tree:

The next nodes
always fill the next
level from left-to-

right.
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Binary Heaps

 Building a
Complete
Binary Tree:

The next nodes
always fill the next
level from left-to-

right.
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Binary Heaps

 Building a
Complete
Binary Tree:

The next nodes
always fill the next
level from left-to-

right.
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Binary Heaps

 Building a
Complete
Binary Tree:
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Binary Heaps

 Building a
Complete
Binary Tree:

Each node in a heap
contains a key that
can be compared to
other nodes' keys.

19

4222127

23

45

35

This is an example 
of a MaxHeap
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Binary Heaps

 Binary Heap:
 New nodes are always added at the lowest level

 And are inserted from left to right

 There is no particular relationship among the data 
items in nodes on any given level
 Even if the nodes have the same parent
 Example:  the right node does not necessarily have to 

be larger than the left node (as in BSTs)

 The only ordering property for heaps is the one 
already defined
 Root of any given subtree is either largest or smallest 

element in that tree…either a max-heap or a min-heap
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Binary Heaps

 Binary Heap:
 The tree never becomes unbalanced
 A heap is not a sorted structure

 But it can be regarded as partially ordered
 Since the minimum value is always at the root

 A given set of data can be formed into many 
different heaps
 Depending on the order in which the data arrives
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Binary Heaps

 Binary Heap:
 “Okay, great…whupdedoo”
 Yeah, we now know what a binary heap is
 But how does it help us?
 What is its purpose?

 Binary heaps are usually used to implement 
another abstract data type:
 A priority queue
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Binary Heaps

 Priority Queues:
 A priority queue is basically what it sounds like

 it is a queue
 Which means that we will have a line
 But the first person in line is not necessarily the first 

person out of line
 Rather, the queuing order is based on a priority
 Meaning, if one person has a higher priority, that person 

goes right to the front

 Examples:
 Emergency room:

 Higher priority injuries are taken first
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Binary Heaps

 Priority Queues:
 The model:

 Requests are inserted in the order of arrival
 The request with the highest priority is processed first

 Meaning, it is removed from the queue
 Priority can be indicated by a number

 But you have to determine what has most priority
 Maybe your application results in smallest number having the 

highest priority
 Maybe the largest number has the highest priority

 This really isn’t important and is an implementation detail
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Binary Heaps

 Priority Queues:
 So how could we implement a priority queue?

 Sorted Linked List
 Higher priority items are ALWAYS at the front of the list
 Example:  a check out line in a supermarket

 But people who are more important can cut in line
 Running Time:

 O(n) insertion time:  you have to search through, potentially, n 
nodes to find the correct spot (based on priority)

 O(1) deletion time (finding the node with the highest priority) 
since the highest priority node is first node of the list
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Binary Heaps

 Priority Queues:
 So how could we implement a priority queue?

 Unsorted Linked List
 Keep a list of elements as a queue
 To add an element, append it to the end
 To remove an element, search through all the elements for 

the one with the highest priority
 Running Time:

 O(1) insertion time:  you simple add to the end of the list
 O(n) deletion time:  you have to, potentially, search through all 

n nodes to find the correct node to delete
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Binary Heaps

 Priority Queues:
 So how could we implement a priority queue?

 Correct Method:  Binary Heap!
 We use a binary heap to implement a priority queue

 So we are using one abstract data type to implement another 
abstract data type

 Running time ends up being O(logn) for both insertion 
and deletion into a Heap

 FindMin (finding the minimum) ends up being O(1)
 cuz we just find (look at) the root, which is O(1)

 So now we look at how to maintain a heap/priority queue
 How to insert into and delete from a heap
 And how to build a heap
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Brief Interlude:  FAIL Picture
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Binary Heaps

 Adding Nodes to a Binary Heap
 Assume the existence of a current heap
 Remember:

 The binary heap MUST follow the Shape property
 The tree must be balanced

 Insertions will be made in the next available spot
 Meaning, at the last level
 and at the next spot, going from left to right

 But what will most likely happen when you do 
this?
 The Heap property will NOT be maintained
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 Adding Nodes to a Binary Heap

 Given this Binary Heap:
 And it is a Max-heap

 We now add a new node
 With data value 42

 We add at the last position
 But this voids the

Heap Property
 42 is greater than

both 27 and 35
 So we must fix this! 42

Binary Heaps

19

4222127

23

45

35
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Binary Heaps

 Adding Nodes to a Binary Heap
 Percolate Up procedure

 In order to fix the out of place node, we must follow the 
following “Percolate Up” procedure
 If the parent of the newly inserted node is less than the newly 

inserted node (this is clearly for a “max heap”)
 Then SWAP them

 This counts as one “Percolate Up” step
 Continue this process until the new node finds the correct 

spot
 Continue SWAPPING until the parent of the new node 

has a value that is greater than the new node
 Or if the new node reaches all the way to the root
 This is now the new “home” for this node
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 Adding Nodes to a Binary Heap

 Put the new node
in the next available spot.

 Push the new node
upward, swapping
with its parent until
the new node reaches
an acceptable location.

42

Binary Heaps

19

4222127

23

45

35
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 Adding Nodes to a Binary Heap

 Put the new node
in the next available spot.

 Push the new node
upward, swapping
with its parent until
the new node reaches
an acceptable location.

19

4222142

23

45

35

27

Binary Heaps
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19

4222135

23

45

42

27

 Adding Nodes to a Binary Heap

 Put the new node
in the next available spot.

 Push the new node
upward, swapping
with its parent until
the new node reaches
an acceptable location.

Binary Heaps
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 Adding Nodes to a Binary Heap

 42 has now reached
an acceptable location

 Its parent (node 45) has
a value that is greater
than 42

 This process is called
Percolate Up

 Other books call it
Heapification Upward

 What is important
is how it works

19

4222135

23

45

42

27

Binary Heaps
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Binary Heaps

 Adding Nodes to a Binary Heap
 Percolate Up procedure

 What is the Big-O running time of insertion into a heap?
 The actual insertion is simply O(1)

 We simply insert at the last position
 And you will see (in a bit) how we quick access to this position

 But when we do this,
 We need to fix the tree to maintain the Heap Property

 Percolate Up takes O(logn) time
 Why?
 Because the height of the tree is log n
 Worst case scenario is having to SWAP all the way to the root

 So the overall running time of an insertion is O(logn) 
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Binary Heaps

 Deleting Nodes from a Binary Heap
 We will write a function called deleteMin (or deleteMax)
 Which node will we ALWAYS be deleting?
 Remember:

 We are using a Heap to implement a priority queue!
 And in a priority queue, we always delete the first element
 The one with the highest priority

 So we will ALWAYS be deleting the ROOT of the 
tree
 So this is quite easy!
 deleteMin (or deleteMax for a Max Heap) simply deletes 

the root and returns its value to main
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Binary Heaps

 Deleting Nodes from a Binary Heap
 We will write a function called deleteMin

 deleteMin simply deletes the root and returns its value to 
main

 But what will happen when we delete the root?
 We will have a tree with no root!
 The root will be missing

 So clearly this needs to be fixed
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Binary Heaps

 Deleting Nodes from a Binary Heap
 Fixing the tree after deleting the root:
1) Copy the last node of the tree into the position of the root
2) Then remove that last node (to avoid duplicates)

 Note:  The new root is almost assuredly out of place
 Most likely, one, or both, of its children will have a greater 

value than it
 If so:

3) Swap the new root node with the greater of its child nodes
 This is considered one “Percolate Down” step

 Continue this process until the “last node” ends up in a 
spot where its children have values smaller than it
 Neither child can have a value greater than it

This process is
for a Max-heap
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Binary Heaps

 Deleting Nodes from a Binary Heap

 Given the following Heap:
 We perform a delete
 Which means 45 will

get deleted

19

4222135

23

45

42

27
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Binary Heaps

 Deleting Nodes from a Binary Heap

 Given the following Heap:
 We perform a delete
 Which means 45 will

get deleted

19

4222135

2342

27
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Binary Heaps

 Deleting Nodes from a Binary Heap

 The last node now gets
moved to the root

 So 27 goes to the root

19

4222135

2342

27
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Binary Heaps

 Deleting Nodes from a Binary Heap

 The last node now gets
moved to the root

 So 27 goes to the root
 27 is now out of place
 We must Percolate Down

19

4222135

23

27

42
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19

4222135

23

27

42

Binary Heaps

 Deleting Nodes from a Binary Heap

 Percolate Down:
 Push the out-of-place

node downward,
 swapping with its

larger child
 until the out-of-place

node reaches an
acceptable location
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 Deleting Nodes from a Binary Heap

 Percolate Down:
 Push the out-of-place

node downward,
 swapping with its

larger child
 until the out-of-place

node reaches an
acceptable location

19

4222135

23

42

27

Binary Heaps
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19

4222127

23

42

35

 Deleting Nodes from a Binary Heap

 Percolate Down:
 Push the out-of-place

node downward,
 swapping with its

larger child
 until the out-of-place

node reaches an
acceptable location

Binary Heaps
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 Deleting Nodes from a Binary Heap

 Percolate Down:
 27 has reached an

acceptable location
 Its lone child (19) has

a value that is less
than 27

 So we stop the
Percolate Down
procedure at
this point 19

4222127

23

42

35

Binary Heaps
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Binary Heaps

 Deleting Nodes from a Binary Heap
 What is the Big-O running time of deletion from a heap?
 The actual deletion itself is O(1)

 cause the minimum value is at the root
 and we can delete the root of a tree in O(1) time

 But now we need to fix the tree
 Moving the last node to the root is an O(1) step
 But then we need to Percolate Down

 Percolate Down takes O(logn)
 Why?

 Because the height of the tree is log n
 And the worst case scenario is having to SWAP all the way to 

the farthest leaf

 So the overall running time of a deletion is O(logn)
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Daily Demotivator
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