
Computer Science Department
University of Central Florida

Sorting:
Quick Sort

COP 3502 – Computer Science I

Sorting: Quick Sort page 2 © Jonathan Cazalas

Announcement

 Quiz 4 is TODAY

 Exam 2 is this Friday
 March 30th

 Want to avoid Program 6?

 And want a FREE 100 in its place?
 Do the Community Service
 Absolute DEADLINE is this Wednesday

 March 28th by 12:30 PM sharp in MY OFFICE

Sorting: Quick Sort page 3 © Jonathan Cazalas

Sorting: Quick Sort

 Quick Sort
 Most common sort used in practice
 Why?

 cuz it is usually the quickest in practice!

 Quick Sort uses two main ideas to achieve this
efficiency:

1) The idea of making partitions
2) Recursion

 Let’s look at the partition concept…

Sorting: Quick Sort page 4 © Jonathan Cazalas

Sorting: Quick Sort

 Quick Sort – Partition
 A partition works as follows:
 Given an array of n elements

 You must manually select an element in the array to
partition by

 You must then compare ALL the remaining elements
against this element

 If they are greater,
 Put them to the “right” of the partition element

 If they are less,
 Put them to the “left” of the partition element

Sorting: Quick Sort page 5 © Jonathan Cazalas

Sorting: Quick Sort

 Quick Sort – Partition
 A partition works as follows:

 Once the partition is complete, what can we say about
the position of the partition element?

 We can say (we KNOW) that the partition element is
in its CORRECTLY sorted location

 In fact, after you partition the array, you are left with:
 all the elements to the left of the partition element, in the

array, that still need to be sorted
 all the elements to the right of the partition element, in the

array, that still need to be sorted
 And if you sort those two sides, the entire array will be

sorted!

Sorting: Quick Sort page 6 © Jonathan Cazalas

Sorting: Quick Sort

 Quick Sort
 Partition:

 Essentially breaks down the sorting problem into two
smaller sorting problems
 …what does that sound like?

 Code for Quick Sort (at a real general level):
1) Partition the array with respect to a random element
2) Sort the left part of the array using Quick Sort
3) Sort the right part of the array using Quick Sort

 Notice there is no “merge” step like in Merge Sort
 at the end, all elements are already in their proper order

Sorting: Quick Sort page 7 © Jonathan Cazalas

Sorting: Quick Sort

 Quick Sort
 Code for Quick Sort (at a real general level):

1) Partition the array with respect to a random element
2) Sort the left part of the array using Quick Sort
3) Sort the right part of the array using Quick Sort

 Quick Sort is a recursive algorithm:
 We need a base case

 A case that does NOT make recursive calls
 Our base case, or terminating condition, will be when we

sort an array with only one element
 We know the array is already sorted!

Sorting: Quick Sort page 8 © Jonathan Cazalas

 Let S be the input set.
1. If |S| = 0 or |S| = 1, then return.
2. Pick an element v in S. Call v the partition

element.
3. Partition S – {v} into two disjoint groups:

• S1 = {x ∈ S – {v} | x ≤ v}
• S2 = {x ∈ S – {v} | x ≥ v}

4. Return { quicksort(S1), v, quicksort(S2) }

Sorting: Quick Sort

 Quick Sort

Sorting: Quick Sort page 9 © Jonathan Cazalas

40

10

18

32

2

35

37

17
6

12

pick a pivot

6

10 12 2
17

18

40 37
32 35

partition

quicksort quicksort

18 10 12 17 6 2 40 37 35 32

combine

18 10 12 17 6 2 40 37 35 32

Sorting: Quick Sort

Sorting: Quick Sort page 10 © Jonathan Cazalas

Sorting: Quick Sort

 The idea of “in place”
 In Computer Science, an “in-place” algorithm is

one where the output usually overwrites the input
 There is more detail, but for our purposes, we stop with

that

 Example:
 Say we wanted to reverse an array of n items

 Here is a simple way to do that:

 function reverse(a[0..n]) {
 allocate b[0..n]
 for i from 0 to n
 b[n - i] = a[i]
 return b
}

Sorting: Quick Sort page 11 © Jonathan Cazalas

Sorting: Quick Sort

 The idea of “in place”
 Example:

 Say we wanted to reverse an array of n items
 Here is a simple way to do that:

 Unfortunately, this method requires O(n) extra space to
create the array b
 And allocation can be a slow operation

function reverse(a[0..n]) {
 allocate b[0..n]
 for i from 0 to n
 b[n - i] = a[i]
 return b
}

Sorting: Quick Sort page 12 © Jonathan Cazalas

Sorting: Quick Sort

 The idea of “in place”
 Example:

 Say we wanted to reverse an array of n items
 If we no longer need the original array a
 We can overwrite it using the following in-place algorithm

 Many Sorting algorithms are in-place algorithms
 Quick sort is NOT an in-place algorithm
 BUT, the Partition algorithm can be in-place

function reverse-in-place(a[0..n])
 for i from 0 to floor(n/2)
 swap(a[i], a[n-i])

Sorting: Quick Sort page 13 © Jonathan Cazalas

Sorting: Quick Sort

 How to Partition “in-place”
 Consider the following list of values that we want

to partition

 Let us assume for the time being that we will
partition based on the first element in the array

 The algorithm will partition these elements
“in-place”

5 3 6 9 2 4 7 8

Sorting: Quick Sort page 14 © Jonathan Cazalas

Sorting: Quick Sort

 How to Partition “in-place”

 Here’s how the partition will work:
 Start two counters, one at index one and one at index 7

 The last element in the array
 Advance the left counter forward until an element greater

than the partition element is encountered
 Advance the right counter backwards until a value less

than the pivot is encountered

5 3 6 9 2 4 7 8

Sorting: Quick Sort page 15 © Jonathan Cazalas

Sorting: Quick Sort

 How to Partition “in-place”

 After these two steps are performed, we have:

5 3 6 9 2 4 7 8

5 3 6 9 2 4 7 8

Sorting: Quick Sort page 16 © Jonathan Cazalas

Sorting: Quick Sort

 How to Partition “in-place”

 We know that these two elements are on the
“wrong” side of the array

5 3 6 9 2 4 7 8

5 3 4 9 2 6 7 8

…so SWAP them!

Sorting: Quick Sort page 17 © Jonathan Cazalas

Sorting: Quick Sort

 How to Partition “in-place”

 Now continue to advance the pointers as before

5 3 4 9 2 6 7 8

5 3 4 9 2 6 7 8

Sorting: Quick Sort page 18 © Jonathan Cazalas

Sorting: Quick Sort

 How to Partition “in-place”

 Then SWAP as before:

 At some point, the counters will cross over each other

5 3 4 9 2 6 7 8

5 3 4 2 9 6 7 8

Sorting: Quick Sort page 19 © Jonathan Cazalas

Sorting: Quick Sort

 How to Partition “in-place”

 Again, advance the pointers as before

 So we see that the counters crossed over each other

5 3 4 2 9 6 7 8

5 3 4 2 9 6 7 8

Sorting: Quick Sort page 20 © Jonathan Cazalas

Sorting: Quick Sort

 How to Partition “in-place”

 Now, SWAP the value stored in the original right
counter (black arrow) with the partition element

 Finally, RETURN the index the five is stored in (the right

pointer) to indicate where the partition element ended up

5 3 4 2 9 6 7 8

2 3 4 5 9 6 7 8

Sorting: Quick Sort page 21 © Jonathan Cazalas

Sorting: Quick Sort

 Partition Code
int partition(int* vals, int low, int high) {
 int temp;
 int i, lowpos;

 // A base case that should never really occur.
 if (low == high) return low;

 // Pick a random partition element and swap it into index low.
 i = low + rand()%(high-low+1);
 temp = vals[i];
 vals[i] = vals[low];
 vals[low] = temp;

 // Store the index of the partition element.
 lowpos = low;

 // Update our low pointer.
 low++;

Sorting: Quick Sort page 22 © Jonathan Cazalas

Sorting: Quick Sort

 Partition Code
 // Run Partition so long as low and high counters don't cross.
 while (low <= high) {
 // Move the low pointer forwards.
 while (low <= high && vals[low] <= vals[lowpos]) low++;

 // Move the high pointer backwards.
 while (high >= low && vals[high] > vals[lowpos]) high--;

 // Now swap the values at those two pointers.
 if (low < high)
 swap(&vals[low], &vals[high]);
 }

 // Swap the partition element into it's correct location.
 swap(&vals[lowpos], &vals[high]);

 return high; // Return the index of the partition element.
}

Sorting: Quick Sort page 23 © Jonathan Cazalas

Sorting: Quick Sort

 Quick Sort Code
void quicksort(int* numbers, int low, int high) {

 // Only have to sort if we are sorting more than one number
 if (low < high) {

 // Partition the elements
 // Parition function returns the index of the
 // partition element. Saved into “split”.
 int split = partition(numbers,low,high);

 // Recursively Quick Sort the left side
 quicksort(numbers,low,split-1);

 // Recursively Quick Sort the right side
 quicksort(numbers,split+1,high);
 }
}

Sorting: Quick Sort page 24 © Jonathan Cazalas

 Choosing a Partition Element
 For correctness, we can choose any pivot.
 For efficiency, one of following is best case, the

other worst case:
 pivot partitions the list roughly in half
 pivot is greatest or least element in list

 Which case above is best?
 Clearly, a partition element in the middle is ideal
 As it splits the list roughly in half

 But we don’t know where that element is
 So we have a few ways of choosing pivots

Sorting: Quick Sort

Sorting: Quick Sort page 25 © Jonathan Cazalas

 Choosing a Partition Element
 first element

 bad if input is sorted or in reverse sorted order
 bad if input is nearly sorted
 variation: particular element (e.g. middle element)

 random element
 You could get lucky and choose the middle element
 You could be unlucky and choose the smallest or

greatest element
 Resulting in a partition with ZERO elements on one side

 median of three elements
 choose the median of the left, right, and center

elements

Sorting: Quick Sort

Sorting: Quick Sort page 26 © Jonathan Cazalas

 Choosing a Partition Element
 median of three elements

 choose the median of the left, right, and center
elements

 There is extra expense with this method
 Picking three values
 Doing three comparisons

 But if the array is large, doing this little extra work will
be small compared to the gains of a better partition

 You could also pick the median of 5 or 7
elements
 The more you pick the better partition you get

Sorting: Quick Sort

Sorting: Quick Sort page 27 © Jonathan Cazalas

Brief Interlude: FAIL Picture

Sorting: Quick Sort page 28 © Jonathan Cazalas

Daily UCF Bike Fail

Courtesy of
Benjamin Stanchina

Finding new and
innovative ways
to get your bike
stolen!

Sorting: Quick Sort page 29 © Jonathan Cazalas

Sorting: Quick Sort

 Quick Sort Analysis
 This is more difficult to do than Merge Sort

 Why?
 With Merge Sort, we knew that our recursive calls always

had equal sized inputs
 Remember: we would split the array of size n into two arrays

of size n/2 (so the smaller arrays were always the same size)

 How is Quick Sort different? (more difficult?)
 Each recursive call of Quick Sort could have a different

sized set of numbers to sort
 Because the size of the sets is based on our partition element
 If partition element is in the middle, each set has about half
 Otherwise, one set is large and one is small

Sorting: Quick Sort page 30 © Jonathan Cazalas

Sorting: Quick Sort

 Quick Sort Analysis
 Location of partition element determines difficulty
1) If we get lucky

 and the partition element is ALWAYS in the middle:
 Then this is the BEST case

 As we will always be halving the amount of work left

2) If we are unlucky:
 and we ALWAYS choose the first or the last element in

the list as our partition
 Then this is the WORST case

 As we will have not really sorted anything
 We simply reduced the 2-be-sorted amount by 1

Sorting: Quick Sort page 31 © Jonathan Cazalas

Sorting: Quick Sort

 Quick Sort Analysis
 Location of partition element determines difficulty
3) If we are neither lucky or unlucky:

 Most likely, we will have some great partitions
 Some bad partitions
 And some okay partitions

 So we need to analyze each case:
 Best case
 Average case
 Worst case

And we omit the Average Case
due to its difficulty.
*You’ll get to see it in CS2.

Sorting: Quick Sort page 32 © Jonathan Cazalas

Sorting: Quick Sort

 Quick Sort Analysis
 Analysis of Best Case:

 As mentioned, in the best case, we get a perfect partition
every single time

 Meaning, if we have n elements before the partition,
 we “luckily” pick the middle element as the partition element
 Then we end up with n/2 - 1 elements on each side of the

partition
 So if we had 101 unsorted elements

 we “luckily” pick the 51st element as the partition element
 Then we end up with 50 elements smaller than this element,

on the left
 And 50 elements, greater than this element, on the right

Sorting: Quick Sort page 33 © Jonathan Cazalas

Sorting: Quick Sort

 Quick Sort Analysis
 Analysis of Best Case:

 Again, here are the steps of Quick Sort:
1) Partition the elements
2) Quick Sort the smaller half (recursive)
3) Quick Sort the larger half (recursive)

 So at each recursive step, the input size is halved
 Let T(n) be the running time of Quick Sort on n elements

 And remember that Partition runs on O(n) time
 So we get our recurrence relation for the best case:

 T(n) = 2*T(n/2) + O(n)
 This is the same recurrence relation as Merge Sort

 So in the best case, Quick Sort runs in O(nlogn) time

Sorting: Quick Sort page 34 © Jonathan Cazalas

Sorting: Quick Sort

 Quick Sort Analysis
 Analysis of Worst Case:

 Assume that we are horribly unlucky
 And when choosing the partition element, we somehow

end up always choosing the greatest value remaining
 Now for this worst case:

 How many times will the Partition function run?
 Think: when we choose the greatest element (for example)
 We have the partition element, then ALL other elements are to

the left in one partition
 The “partition” to the right will have ZERO elements

 So Partition will run n-1 times
 The first time results in comparing n-1 values, then comparing

n-2 values the second time, followed by n-3, etc.

Sorting: Quick Sort page 35 © Jonathan Cazalas

Sorting: Quick Sort

 Quick Sort Analysis
 Analysis of Worst Case:

 How many times will the Partition function run?
 Partition will run n-1 times

 The first time results in comparing n-1 values, then comparing
n-2 values the second time, followed by n-3, etc.

 When we sum the number of compares, we get:
 1 + 2 + 3 + … + (n - 1)
 You should know what this equals:

 Thus, the worst case running time is O(n2)

2
)1(nn −

Sorting: Quick Sort page 36 © Jonathan Cazalas

Sorting: Quick Sort

 Quick Sort Analysis
 Summary:

 Best Case: O(nlogn)
 Average Case: O(nlogn)
 Worst Case: O(n2)

 Compare Merge Sort and Quick Sort:
 Merge Sort: guaranteed O(nlogn)
 Quick Sort: best and average case is O(nlogn) but worst

case is O(n2)

Sorting: Quick Sort page 37 © Jonathan Cazalas

Sorting: Quick Sort

WASN’T
THAT

THE GREATEST!

Sorting: Quick Sort page 38 © Jonathan Cazalas

Daily Demotivator

Computer Science Department
University of Central Florida

Sorting:
Quick Sort

COP 3502 – Computer Science I

	Sorting:�Quick Sort
	Announcement
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Brief Interlude: FAIL Picture
	Daily UCF Bike Fail
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Daily Demotivator
	Sorting:�Quick Sort

