Sorting:
Quick Sort

r | Computer Science Department
. University of Central Florida

COP 3502 — Computer Science |

Announcement

Quiz 4 is TODAY

Exam 2 is this Friday
March 30%

Want to avoid Program 67
— And want a FREE 100 in its place?
Do the Community Service

Absolute DEADLINE is this Wednesday
March 28t by 12:30 PM sharp in MY OFFICE

© Jonathan Cazalas Sorting: Quick Sort

page 2

Sorting: Quick Sort

Quick Sort
Most common sort used in practice
Why?
cuz it is usually the quickest in practice!

Quick Sort uses two main ideas to achieve this
efficiency:

The idea of making partitions
Recursion

Let’s look at the partition concept...

© Jonathan Cazalas Sorting: Quick Sort

page 3

Sorting: Quick Sort

Quick Sort — Partition
A partition works as follows:

Given an array of n elements

You must manually select an element in the array to
partition by

You must then compare ALL the remaining elements
against this element

If they are greater,

Put them to the “right” of the partition element
If they are less,

Put them to the “left” of the partition element

© Jonathan Cazalas Sorting: Quick Sort page 4

Sorting: Quick Sort

Quick Sort — Partition

A partition works as follows:

Once the partition is complete, what can we say about
the position of the partition element?

We can say (we KNOW) that the partition element is

In Its CORRECTLY sorted location

In fact, after you partition the array, you are left with:

all the elements to the left of the partition element, in the
array, that still need to be sorted

all the elements to the right of the partition element, in the
array, that still need to be sorted

And If you sort those two sides, the entire array will be
sorted!

© Jonathan Cazalas

Sorting: Quick Sort

page 5

Sorting: Quick Sort

Quick Sort

Partition:
Essentially breaks down the sorting problem into two
smaller sorting problems
...what does that sound like?
Code for Quick Sort (at a real general level):
Partition the array with respect to a random element
Sort the left part of the array using Quick Sort
Sort the right part of the array using Quick Sort

Notice there Is no “merge” step like in Merge Sort
at the end, all elements are already In their proper order

© Jonathan Cazalas Sorting: Quick Sort page 6

Sorting: Quick Sort

Quick Sort

Code for Quick Sort (at a real general level):
Partition the array with respect to a random element
Sort the left part of the array using Quick Sort
Sort the right part of the array using Quick Sort

Quick Sort is a recursive algorithm:
We need a base case
I A case that does NOT make recursive calls

Our base case, or terminating condition, will be when we
sort an array with only one element
We know the array is already sorted!

© Jonathan Cazalas Sorting: Quick Sort page 7

Sorting: Quick Sort

Quick Sort
W Let S be the input set.
1.1f|S| =0 or |S| =1, then return.

2. Pick an element vin S. Call v the partition
element.

3. Partition S — {v} into two disjoint groups:
— « S;={xeS—-{vi|x<v}
« S, ={xeS—{v}|x=>v}

4. Return { quicksort(S,), v, quicksort(S,) }

© Jonathan Cazalas Sorting: Quick Sort page 8

Sorting: Quick Sort

/ pick a pivot
40 18 37 2

32 6 35

10 12 o

C partltlon ﬁ
quicksort quicksort
V v
Q 6 10 12 17) (32 35 37 40)

combine

2 6 10 12 17 18 32 35 37 Ai)

© Jonathan Cazalas Sorting: Quick Sort page 9

S

Sorting: Quick Sort

The idea of “Iin place”

In Computer Science, an “in-place” algorithm is
one where the output usually overwrites the input

There is more detail, but for our purposes, we stop with
that

Example:

Say we wanted to reverse an array of n items
Here is a simple way to do that:

function reverse(af0..n]) {
allocate Db[O0..n]
for 1 from O to n

b[n - i] = a[i]

return b

© Jonathan Cazalas Sorting: Quick Sort page 10

=7

Sorting: Quick Sort

The idea of “Iin place”

Example:

Say we wanted to reverse an array of n items
Here is a simple way to do that:

function reverse(af0..n]) {
allocate Db[O0..n]
for 1 from O to n

b[n - i] = a[i]

return b

Unfortunately, this method requires O(n) extra space to
create the array b
And allocation can be a slow operation

© Jonathan Cazalas Sorting: Quick Sort page 11

Sorting: Quick Sort

The idea of “Iin place”

Example:
Say we wanted to reverse an array of n items
If we no longer need the original array a
We can overwrite it using the following in-place algorithm

function reverse-in-place(af[0..n])
for 1 from O to floor(n/2)

swap(a[i], a[n-i])

Many Sorting algorithms are in-place algorithms
Quick sort is NOT an in-place algorithm
BUT, the Partition algorithm can be in-place

© Jonathan Cazalas

Sorting: Quick Sort page 12

Sorting: Quick Sort

How to Partition “in-place”

Consider the following list of values that we want
to partition

5

3

6

9

2

A

.

8

Let us assume for the time being that we will
partition based on the first element in the array

The algorithm will partition these elements
“In-place”

© Jonathan Cazalas

Sorting: Quick Sort

page 13

Sorting: Quick Sort

How to Partition “in-place”

5136|9247 |38

I {

Here’s how the partition will work:
Start two counters, one at index one and one at index 7
The last element in the array

— Advance the left counter forward until an element greater
than the partition element is encountered

Advance the right counter backwards until a value less
than the pivot Is encountered

© Jonathan Cazalas Sorting: Quick Sort page 14

Sorting: Quick Sort

How to Partition “in-place”

5136|924 |7 |8
I f
After these two steps are performed, we have:
513|692 |4 |7 8
— I]

© Jonathan Cazalas

Sorting: Quick Sort

Sorting: Quick Sort

How to Partition “in-place”

5136|9247 |38

I {

We know that these two elements are on the
“wrong” side of the array ...so SWAP them!

— 5134|926)| 7|38

I I

© Jonathan Cazalas Sorting: Quick Sort page 16

Sorting: Quick Sort

How to Partition “in-place”

5|1 3149126 |78

I {

Now continue to advance the pointers as before

© Jonathan Cazalas Sorting: Quick Sort page 17

Sorting: Quick Sort

How to Partition “in-place”

5|1 3149126 |78

1

Then SWAP as before:

— 534|296)| 7|38

1

At some point, the counters will cross over each other

© Jonathan Cazalas Sorting: Quick Sort page 18

Sorting: Quick Sort

How to Partition “in-place”

5|1 34296]| 7|8

1

Again, advance the pointers as before

— 534|296)| 7|38

1

So we see that the counters crossed over each other

© Jonathan Cazalas Sorting: Quick Sort page 19

Sorting: Quick Sort

How to Partition “in-place”

5

3

A

2

9

Now, SWAP the value stored in the original right
counter (black arrow) with the partition element

I

f

2

3

A

5

9

0

-

8

I

f

Finally, RETURN the index the five is stored in (the right
pointer) to indicate where the partition element ended up

© Jonathan Cazalas

Sorting: Quick Sort

page 20

Sorting: Quick Sort

Partition Code

int partition(int* vals,
int temp;
int 1, lowpos;

int low, int high) {

// A base case that should never really occur.
iIfT (low == high) return low;

// Pick a random partition element and swap it into index low.
1 = low + randQ%(high-low+1);

temp = vals[i];

vals[i] = vals[low];

vals[low] = temp;

// Store the index of the partition element.
lowpos = low;

// Update our low pointer.

Sorting: Quick Sort

Partition Code

// Run Partition so long as low and high counters don"t cross.
while (low <= high) {

// Move the low pointer forwards.

while (low <= high && vals[low] <= vals[lowpos]) low++;

// Move the high pointer backwards.
while (high >= low && vals[high] > vals[lowpos]) high--;

// Now swap the values at those two pointers.
iIT (low < high)
swap(&vals[low], &vals[high]);
by

// Swap the partition element into i1t"s correct location.
swap(&vals[lowpos], &vals[high]);

return high; // Return the index of the partition element.

Sorting: Quick Sort

Quick Sort Code

void quicksort(int* numbers, int low, Int high) {

// Only have to sort 1f we are sorting more than one number
if (low < high) {

// Partition the elements

// Parition function returns the index of the
// partition element. Saved iInto “split”.
int split = partition(humbers, low,high);

// Recursively Quick Sort the left side
quicksort(numbers, low,split-1);

// Recursively Quick Sort the right side
quicksort(numbers,split+l, high);

Sorting: Quick Sort

Choosing a Partition Element
For correctness, we can choose any pivot.

For efficiency, one of following is best case, the
other worst case:

pivot partitions the list roughly in half

pivot is greatest or least element in list

Which case above is best?
— Clearly, a partition element in the middle is ideal
As it splits the list roughly in half

But we don’t know where that element is
So we have a few ways of choosing pivots

© Jonathan Cazalas Sorting: Quick Sort

page 24

Sorting: Quick Sort

Choosing a Partition Element

first element
bad if input is sorted or in reverse sorted order
bad if input is nearly sorted
variation: particular element (e.g. middle element)

random element
You could get lucky and choose the middle element

You could be unlucky and choose the smallest or
greatest element

Resulting in a partition with ZERO elements on one side
median of three elements

choose the median of the left, right, and center
elements

© Jonathan Cazalas Sorting: Quick Sort page 25

Sorting: Quick Sort

Choosing a Partition Element

median of three elements

choose the median of the left, right, and center
elements

There is extra expense with this method
Picking three values
Doing three comparisons

But if the array is large, doing this little extra work will

be small compared to the gains of a better partition
You could also pick the median of 5 or 7
elements

The more you pick the better partition you get

© Jonathan Cazalas Sorting: Quick Sort page 26

Brief Interlude: FAIL Picture

THERE IS HOPE
MAKE THE CALL

THE CONSEQUENCES OF
JUMPING FROM THIS
BRIDGE ARE FATAL
AND TRAGIC.

© Jonathan Cazalas Sorting: Quick Sort page 27

Daily UCF Bike Fall

Finding new and
innovative ways
to get your bike

stolen!

Courtesy of
Benjamin Stanchina

© Jonathan Cazalas Sorting: Quick Sort page 28

Sorting: Quick Sort

Quick Sort Analysis

This i1s more difficult to do than Merge Sort
Why?
With Merge Sort, we knew that our recursive calls always

had equal sized inputs

Remember: we would split the array of size n into two arrays
of size n/2 (so the smaller arrays were always the same size)

How is Quick Sort different? (more difficult?)

Each recursive call of Quick Sort could have a different
sized set of numbers to sort
Because the size of the sets is based on our partition element
If partition element is in the middle, each set has about half
Otherwise, one set is large and one is small

© Jonathan Cazalas Sorting: Quick Sort page 29

Sorting: Quick Sort

Quick Sort Analysis
Location of partition element determines difficulty

If we get lucky
and the partition element is ALWAYS in the middle:
Then this is the BEST case
As we will always be halving the amount of work left
If we are unlucky:

s and we ALWAYS choose the first or the last element in
the list as our partition
Then this is the WORST case

As we will have not really sorted anything
We simply reduced the 2-be-sorted amount by 1

© Jonathan Cazalas Sorting: Quick Sort page 30

Sorting: Quick Sort

Quick Sort Analysis
Location of partition element determines difficulty

If we are neither lucky or unlucky:
Most likely, we will have some great partitions
Some bad partitions
And some okay partitions

— So we need to analyze each case:
Best case
Average case And we omit the Average Case
due to its difficulty.
Worst case *You'll get to see it in CS2.

© Jonathan Cazalas Sorting: Quick Sort page 31

Sorting: Quick Sort

Quick Sort Analysis

Analysis of Best Case:

As mentioned, in the best case, we get a perfect partition

every single time

Meaning, if we have n elements before the partition,
we “luckily” pick the middle element as the partition element
Then we end up with n/2 - 1 elements on each side of the
partition

— So if we had 101 unsorted elements

we “luckily” pick the 515t element as the partition element

Then we end up with 50 elements smaller than this element,
on the left

And 50 elements, greater than this element, on the right

© Jonathan Cazalas Sorting: Quick Sort page 32

Sorting: Quick Sort

Quick Sort Analysis

Analysis of Best Case:

Again, here are the steps of Quick Sort:
Partition the elements
Quick Sort the smaller half (recursive)
Quick Sort the larger half (recursive)
So at each recursive step, the input size is halved

Let T(n) be the running time of Quick Sort on n elements
And remember that Partition runs on O(n) time

So we get our recurrence relation for the best case:
T(n) = 2*T(n/2) + O(n)
This is the same recurrence relation as Merge Sort
So in the best case, Quick Sort runs in O(nlogn) time

© Jonathan Cazalas Sorting: Quick Sort page 33

Sorting: Quick Sort

Quick Sort Analysis

Analysis of Worst Case:
Assume that we are horribly unlucky

And when choosing the partition element, we somehow
end up always choosing the greatest value remaining
Now for this worst case:

How many times will the Partition function run?

Think: when we choose the greatest element (for example)

We have the partition element, then ALL other elements are to
the left in one partition

The “partition” to the right will have ZERO elements
So Partition will run n-1 times

The first time results in comparing n-1 values, then comparing
n-2 values the second time, followed by n-3, etc.

© Jonathan Cazalas Sorting: Quick Sort page 34

Sorting: Quick Sort

Quick Sort Analysis

Analysis of Worst Case:

How many times will the Partition function run?

Partition will run n-1 times

The first time results in comparing n-1 values, then comparing
n-2 values the second time, followed by n-3, etc.

When we sum the number of compares, we get:
1+2+3+...+(n-1)
You should know what this equals:

(n=n

2
Thus, the worst case running time is O(n?)

© Jonathan Cazalas Sorting: Quick Sort

page 35

Sorting: Quick Sort

Quick Sort Analysis

Summary:
Best Case: O(nlogn)
Average Case: O(nlogn)
Worst Case: O(n?)

Compare Merge Sort and Quick Sort:
- Merge Sort: guaranteed O(nlogn)

Quick Sort: best and average case is O(nlogn) but worst
case is O(n?)

© Jonathan Cazalas Sorting: Quick Sort page 36

Sorting: Quick Sort

WASN'T
THAT
— THE GREATEST!

Daily Demotivator

THE Harper You Try, THE Dumeer You Look.

© Jonathan Cazalas Sorting: Quick Sort

page 38

Sorting:
Quick Sort

r | Computer Science Department
. University of Central Florida

COP 3502 — Computer Science |

	Sorting:�Quick Sort
	Announcement
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Brief Interlude: FAIL Picture
	Daily UCF Bike Fail
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Daily Demotivator
	Sorting:�Quick Sort

