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Announcement 

 Quiz 4 is TODAY 
 

 Exam 2 is this Friday 
 March 30th 

 
 Want to avoid Program 6? 

 And want a FREE 100 in its place? 
 Do the Community Service 
 Absolute DEADLINE is this Wednesday 

 March 28th by 12:30 PM sharp in MY OFFICE 
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Sorting:  Quick Sort 

 Quick Sort 
 Most common sort used in practice 
 Why? 

 cuz it is usually the quickest in practice! 

 Quick Sort uses two main ideas to achieve this 
efficiency: 

1) The idea of making partitions 
2) Recursion 

 
 Let’s look at the partition concept… 
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 Quick Sort – Partition 
 A partition works as follows: 
 Given an array of n elements 

 You must manually select an element in the array to 
partition by 

 You must then compare ALL the remaining elements 
against this element 

 If they are greater, 
 Put them to the “right” of the partition element 

 If they are less, 
 Put them to the “left” of the partition element 
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Sorting:  Quick Sort 

 Quick Sort – Partition 
 A partition works as follows: 

 Once the partition is complete, what can we say about 
the position of the partition element? 

 We can say (we KNOW) that the partition element is 
in its CORRECTLY sorted location 

 In fact, after you partition the array, you are left with: 
 all the elements to the left of the partition element, in the 

array, that still need to be sorted 
 all the elements to the right of the partition element, in the 

array, that still need to be sorted 
 And if you sort those two sides, the entire array will be 

sorted! 
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 Quick Sort 
 Partition: 

 Essentially breaks down the sorting problem into two 
smaller sorting problems 
 …what does that sound like? 

 Code for Quick Sort (at a real general level): 
1) Partition the array with respect to a random element 
2) Sort the left part of the array using Quick Sort 
3) Sort the right part of the array using Quick Sort 

 

 Notice there is no “merge” step like in Merge Sort 
 at the end, all elements are already in their proper order 
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 Quick Sort 
 Code for Quick Sort (at a real general level): 

1) Partition the array with respect to a random element 
2) Sort the left part of the array using Quick Sort 
3) Sort the right part of the array using Quick Sort 

 Quick Sort is a recursive algorithm: 
 We need a base case 

 A case that does NOT make recursive calls 
 Our base case, or terminating condition, will be when we 

sort an array with only one element 
 We know the array is already sorted! 
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 Let S be the input set. 
1. If |S| = 0 or |S| = 1, then return. 
2. Pick an element v in S.  Call v the partition 

element. 
3. Partition S – {v} into two disjoint groups: 

• S1 = {x ∈ S – {v} | x ≤ v} 
• S2 = {x ∈ S – {v} | x ≥ v} 

4. Return { quicksort(S1), v, quicksort(S2) } 

Sorting:  Quick Sort 

 Quick Sort 
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Sorting:  Quick Sort 



Sorting:  Quick Sort page 10 © Jonathan Cazalas 

Sorting:  Quick Sort 

 The idea of “in place” 
 In Computer Science, an “in-place” algorithm is 

one where the output usually overwrites the input 
 There is more detail, but for our purposes, we stop with 

that 

 Example: 
 Say we wanted to reverse an array of n items 

 Here is a simple way to do that: 

 function reverse(a[0..n]) { 
 allocate b[0..n] 
 for i from 0 to n 
  b[n - i] = a[i] 
 return b 
} 
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 The idea of “in place” 
 Example: 

 Say we wanted to reverse an array of n items 
 Here is a simple way to do that: 

 
 
 
 
 
 

 Unfortunately, this method requires O(n) extra space to 
create the array b 
 And allocation can be a slow operation 

 

function reverse(a[0..n]) { 
 allocate b[0..n] 
 for i from 0 to n 
  b[n - i] = a[i] 
 return b 
} 
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 The idea of “in place” 
 Example: 

 Say we wanted to reverse an array of n items 
 If we no longer need the original array a 
 We can overwrite it using the following in-place algorithm 

 
 
 

 Many Sorting algorithms are in-place algorithms 
 Quick sort is NOT an in-place algorithm 
 BUT, the Partition algorithm can be in-place 

function reverse-in-place(a[0..n]) 
 for i from 0 to floor(n/2) 
  swap(a[i], a[n-i]) 
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 How to Partition “in-place” 
 Consider the following list of values that we want 

to partition 
 
 

 Let us assume for the time being that we will 
partition based on the first element in the array 

 The algorithm will partition these elements 
“in-place” 
 
 

5 3 6 9 2 4 7 8 
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Sorting:  Quick Sort 

 How to Partition “in-place” 
 
 
 

 Here’s how the partition will work: 
 Start two counters, one at index one and one at index 7 

 The last element in the array 
 Advance the left counter forward until an element greater 

than the partition element is encountered 
 Advance the right counter backwards until a value less 

than the pivot is encountered 

 
 

5 3 6 9 2 4 7 8 
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 How to Partition “in-place” 
 
 
 

 After these two steps are performed, we have: 
 

5 3 6 9 2 4 7 8 

5 3 6 9 2 4 7 8 
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 How to Partition “in-place” 
 
 
 

 We know that these two elements are on the 
“wrong” side of the array 
 
 

5 3 6 9 2 4 7 8 

5 3 4 9 2 6 7 8 

…so SWAP them! 
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 How to Partition “in-place” 
 
 
 

 Now continue to advance the pointers as before 
 
 

5 3 4 9 2 6 7 8 

5 3 4 9 2 6 7 8 
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 How to Partition “in-place” 
 
 
 

 Then SWAP as before: 
 
 
 
 
 At some point, the counters will cross over each other 

 
 

5 3 4 9 2 6 7 8 

5 3 4 2 9 6 7 8 
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Sorting:  Quick Sort 

 How to Partition “in-place” 
 
 
 

 Again, advance the pointers as before 
 
 
 
 
 So we see that the counters crossed over each other 

 
 

5 3 4 2 9 6 7 8 

5 3 4 2 9 6 7 8 
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 How to Partition “in-place” 
 
 
 

 Now, SWAP the value stored in the original right 
counter (black arrow) with the partition element 
 
 

 
 Finally, RETURN the index the five is stored in (the right 

pointer) to indicate where the partition element ended up 

 

5 3 4 2 9 6 7 8 

2 3 4 5 9 6 7 8 
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 Partition Code 
int partition(int* vals, int low, int high) { 
 int temp; 
 int i, lowpos; 
  
 // A base case that should never really occur. 
 if (low == high) return low; 
   
 // Pick a random partition element and swap it into index low. 
 i = low + rand()%(high-low+1); 
 temp = vals[i]; 
 vals[i] = vals[low]; 
 vals[low] = temp; 
 
 // Store the index of the partition element. 
 lowpos = low; 
 
 // Update our low pointer. 
 low++; 
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 Partition Code 
 // Run Partition so long as low and high counters don't cross. 
 while (low <= high) { 
  // Move the low pointer forwards. 
  while (low <= high && vals[low] <= vals[lowpos]) low++; 
 
  // Move the high pointer backwards. 
  while (high >= low && vals[high] > vals[lowpos]) high--; 
 
  // Now swap the values at those two pointers. 
  if (low < high)  
   swap(&vals[low], &vals[high]); 
 } 
   
 // Swap the partition element into it's correct location. 
 swap(&vals[lowpos], &vals[high]); 
  
 return high; // Return the index of the partition element. 
} 
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 Quick Sort Code 
void quicksort(int* numbers, int low, int high) { 
 
 // Only have to sort if we are sorting more than one number 
 if (low < high) { 
 
  // Partition the elements 
  // Parition function returns the index of the 
  // partition element.  Saved into “split”. 
  int split = partition(numbers,low,high); 
 
  // Recursively Quick Sort the left side    
  quicksort(numbers,low,split-1); 
 
  // Recursively Quick Sort the right side 
  quicksort(numbers,split+1,high); 
 } 
} 
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 Choosing a Partition Element 
 For correctness, we can choose any pivot.  
 For efficiency, one of following is best case, the 

other worst case: 
 pivot partitions the list roughly in half 
 pivot is greatest or least element in list 

 Which case above is best? 
 Clearly, a partition element in the middle is ideal 
 As it splits the list roughly in half 

 But we don’t know where that element is 
 So we have a few ways of choosing pivots 

Sorting:  Quick Sort 
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 Choosing a Partition Element 
 first element 

 bad if input is sorted or in reverse sorted order 
 bad if input is nearly sorted 
 variation: particular element (e.g. middle element) 

 random element 
 You could get lucky and choose the middle element 
 You could be unlucky and choose the smallest or 

greatest element 
 Resulting in a partition with ZERO elements on one side 

 median of three elements 
 choose the median of the left, right, and center 

elements 

Sorting:  Quick Sort 
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 Choosing a Partition Element 
 median of three elements 

 choose the median of the left, right, and center 
elements 

 There is extra expense with this method 
 Picking three values 
 Doing three comparisons 

 But if the array is large, doing this little extra work will 
be small compared to the gains of a better partition 

 You could also pick the median of 5 or 7 
elements 
 The more you pick the better partition you get 

Sorting:  Quick Sort 
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Brief Interlude:  FAIL Picture 
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Daily UCF Bike Fail 

Courtesy of 
Benjamin Stanchina 

Finding new and 
innovative ways 
to get your bike 
stolen! 
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 Quick Sort Analysis 
 This is more difficult to do than Merge Sort 

 Why? 
 With Merge Sort, we knew that our recursive calls always 

had equal sized inputs 
 Remember:  we would split the array of size n into two arrays 

of size n/2 (so the smaller arrays were always the same size) 

 How is Quick Sort different?  (more difficult?) 
 Each recursive call of Quick Sort could have a different 

sized set of numbers to sort 
 Because the size of the sets is based on our partition element 
 If partition element is in the middle, each set has about half 
 Otherwise, one set is large and one is small 
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 Quick Sort Analysis 
 Location of partition element determines difficulty 
1) If we get lucky 

 and the partition element is ALWAYS in the middle: 
 Then this is the BEST case 

 As we will always be halving the amount of work left 

2) If we are unlucky: 
 and we ALWAYS choose the first or the last element in 

the list as our partition 
 Then this is the WORST case 

 As we will have not really sorted anything 
 We simply reduced the 2-be-sorted amount by 1 
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 Quick Sort Analysis 
 Location of partition element determines difficulty 
3) If we are neither lucky or unlucky: 

 Most likely, we will have some great partitions 
 Some bad partitions 
 And some okay partitions 

 

 So we need to analyze each case: 
 Best case 
 Average case 
 Worst case 

 
 

And we omit the Average Case 
due to its difficulty. 
*You’ll get to see it in CS2. 
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 Quick Sort Analysis 
 Analysis of Best Case: 

 As mentioned, in the best case, we get a perfect partition 
every single time 

 Meaning, if we have n elements before the partition, 
 we “luckily” pick the middle element as the partition element 
 Then we end up with n/2 - 1 elements on each side of the 

partition 
 So if we had 101 unsorted elements 

 we “luckily” pick the 51st element as the partition element 
 Then we end up with 50 elements smaller than this element, 

on the left 
 And 50 elements, greater than this element, on the right 
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 Quick Sort Analysis 
 Analysis of Best Case: 

 Again, here are the steps of Quick Sort: 
1) Partition the elements 
2) Quick Sort the smaller half (recursive) 
3) Quick Sort the larger half (recursive) 

 So at each recursive step, the input size is halved 
 Let T(n) be the running time of Quick Sort on n elements 

 And remember that Partition runs on O(n) time 
 So we get our recurrence relation for the best case: 

 T(n) = 2*T(n/2) + O(n) 
 This is the same recurrence relation as Merge Sort 

 So in the best case, Quick Sort runs in O(nlogn) time 
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 Quick Sort Analysis 
 Analysis of Worst Case: 

 Assume that we are horribly unlucky 
 And when choosing the partition element, we somehow 

end up always choosing the greatest value remaining 
 Now for this worst case: 

 How many times will the Partition function run? 
 Think:  when we choose the greatest element (for example) 
 We have the partition element, then ALL other elements are to 

the left in one partition 
 The “partition” to the right will have ZERO elements 

 So Partition will run n-1 times 
 The first time results in comparing n-1 values, then comparing 

n-2 values the second time, followed by n-3, etc. 
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 Quick Sort Analysis 
 Analysis of Worst Case: 

 How many times will the Partition function run? 
 Partition will run n-1 times 

 The first time results in comparing n-1 values, then comparing 
n-2 values the second time, followed by n-3, etc. 
 

 When we sum the number of compares, we get: 
 1 + 2 + 3 + … + (n - 1) 
 You should know what this equals: 

 
 

 Thus, the worst case running time is O(n2) 
 

2
)1( nn −
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 Quick Sort Analysis 
 Summary: 

 Best Case:  O(nlogn) 
 Average Case:  O(nlogn) 
 Worst Case:  O(n2) 

 

 Compare Merge Sort and Quick Sort: 
 Merge Sort:  guaranteed O(nlogn) 
 Quick Sort:  best and average case is O(nlogn) but worst 

case is O(n2) 
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WASN’T 
THAT 

THE GREATEST! 
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Daily Demotivator 
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