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Announcement 

 Exam 2 is next Friday 
 March 30th 

 
 Quiz 4 is on Monday 

 March 26th 
 The date has been changed 

 
 Program 5 is now assigned 

 
 Community Service due 3/28/12 by 12:30 PM 
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Sorting:  Merge Sort 

 Problem with Bubble/Insertion/Selection Sorts: 
 All of these sorts make a large number of 

comparisons and swaps between elements 
 As mentioned last class (while covering n2 sorts): 

 Any algorithm that swaps adjacent elements can only 
run so fast 

 So one might ask is there a more clever way to 
sort numbers 
 A way that does not require looking at all these pairs 

 Indeed, there are several ways to do this 
 And one of them is Merge Sort 
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Sorting:  Merge Sort 

 Merge Sort 
 Conceptually, Merge Sort works as follows: 

 If the “list” is of length 0 or 1, then it is already sorted! 
 Otherwise: 
1. Divide the unsorted list into two sub-lists of about half 

the size 
 So if your list has n elements, you will divide that list into two 

sub-lists, each having approximately n/2 elements: 
2. Recursively sort each sub-list by calling recursively 

calling Merge Sort on the two smaller lists 
3. Merge the two sub-lists back into one sorted list 

 This Merge is a function that we study on its own 
 In a bit… 
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 Merge Sort 
 Basically, given a list: 

 You will split this list into two lists of about half the size 
 Then you recursively call Merge Sort on each list 
 What does that do? 

 Each of these new lists will, individually, be split into two lists 
of about half the size. 

 So now we have four lists, each about ¼ the size of the 
original list 

 This keeps happening…the lists keep getting split into 
smaller and smaller lists 
 Until you get to a list of size 1 or size 0 

 Then we Merge them into a larger, sorted list 
…which is sorted! 
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Sorting:  Merge Sort 

 Merge Sort 
 Incorporates two main ideas to improve its 

runtime: 
1) A small list will take fewer steps to sort than a 

large list 
2) Fewer steps are required to construct a sorted 

list from two sorted lists than two unsorted lists 
 For example: 

 You only have to traverse each list once if they’re already 
sorted 



Sorting:  Merge Sort page 7 © Jonathan Cazalas 
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 Merge function 
 The key to Merge Sort:  the Merge function 
 Given two sorted lists, Merge them into one 

sorted list 
 Problem: 

 You are given two arrays, each of which is already 
sorted 

 Your job is to efficiently combine the two arrays into one 
larger array 

 The larger array should contain all the values of the two 
smaller arrays 

 Finally, the larger array should be in sorted order 
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 Merge function 
 The key to Merge Sort:  the Merge function 
 Given two sorted lists, Merge them into one 

sorted list 
 If you have two lists: 

 X (x1<x2<…<xm) and Y (y1<y2<…<yn) 
 Merge these into one list:  Z (z1<z2<…<zm+n) 

 Example: 
 List 1 = {3, 8, 9}   and    List 2 = {1, 5, 7} 
 Merge(List 1, List 2) = {1, 3, 5, 7, 8, 9} 
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 Merge function 
 Solution: 

 Keep track of the smallest value in each array that 
hasn’t been placed, in order, in the larger array yet 

 Compare these two smallest values from each array 
 One of these MUST be the smallest of all the values in both 

arrays that are left 
 Place the smallest of the two values in the next location in 

the larger array 
 Adjust the smallest value for the appropriate array 
 Continue this process until all values have been placed 

in the large array 
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3 10 23 54 1 5 25 75 X: Y: 

Result: 

 Example of Merge function: 

Sorting:  Merge Sort 



Sorting:  Merge Sort page 11 © Jonathan Cazalas 

3 10 23 54 5 25 75 

1 

X: Y: 

Result: 

 Example of Merge function: 

Sorting:  Merge Sort 
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10 23 54 5 25 75 

1 3 

X: Y: 

Result: 

Sorting:  Merge Sort 

 Example of Merge function: 
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10 23 54 25 75 

1 3 5 

X: Y: 

Result: 

Sorting:  Merge Sort 

 Example of Merge function: 
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23 54 25 75 

1 3 5 10 

X: Y: 

Result: 

Sorting:  Merge Sort 

 Example of Merge function: 
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54 25 75 

1 3 5 10 23 

X: Y: 

Result: 

Sorting:  Merge Sort 

 Example of Merge function: 
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54 75 

1 3 5 10 23 25 

X: Y: 

Result: 

Sorting:  Merge Sort 

 Example of Merge function: 
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75 

1 3 5 10 23 25 54 

X: Y: 

Result: 

Sorting:  Merge Sort 

 Example of Merge function: 
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1 3 5 10 23 25 54 75 

X: Y: 

Result: 

Sorting:  Merge Sort 

 Example of Merge function: 
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 Merge function 
 The big question: 

 How can we use this Merge function to sort an entire, 
unsorted array? 

 This function only “sorts” a specific scenario: 
 You have to have two, already sorted, arrays 

 Merge can then “sort” (merge) them into one larger 
array 

 So can we use this Merge function to somehow sort a 
large, unsorted array??? 
 

 This brings us back to Merge Sort 
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 Merge Sort 
 Again, here is the main idea for Merge Sort: 
1) Sort the first half of the array, using Merge Sort 
2) Sort the second half of the array, using Merge 

Sort 
 Now, we do indeed have a situation where we can use 

the Merge function! 
 Each half is already sorted! 

3) So simply merge the first half of the array with 
the second half. 

 And this points to a recursive solution… 
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 Merge Sort 
 Conceptually, Merge Sort works as follows: 

 If the “list” is of length 0 or 1, then it is already sorted! 
 Otherwise: 
1. Divide the unsorted list into two sub-lists of about half 

the size 
 So if your list has n elements, you will divide that list into two 

sub-lists, each having approximately n/2 elements: 
2. Recursively sort each sub-list by calling recursively 

calling Merge Sort on the two smaller lists 
3. Merge the two sub-lists back into one sorted list 
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 Merge Sort 
 Basically, given a list: 

 You will split this list into two lists of about half the size 
 Then you recursively call Merge Sort on each list 
 What does that do? 

 Each of these new lists will, individually, be split into two lists 
of about half the size. 

 So now we have four lists, each about ¼ the size of the 
original list 

 This keeps happening…the lists keep getting split into 
smaller and smaller lists 
 Until you get to a list of size 1 or size 0 

 Then we Merge them into a larger, sorted list 
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 Merge sort idea: 
 Divide the array into two halves. 
 Recursively sort the two halves (using merge sort). 
 Use Merge to combine the two arrays. 

sort sort 

merge(0, n/2, n-1) 

mergeSort(0, n/2-1) mergeSort(n/2, n-1) 

Sorting:  Merge Sort 
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67 45 23 14 6 33 98 42 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 

Merge 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 

23 

Merge 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 

23 98 

Merge 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

23 98 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

Merge 

23 98 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

14 

Merge 

23 98 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

45 

Merge 

23 98 14 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

Merge 

98 45 14 23 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

Merge 

98 14 

14 

23 45 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

Merge 

23 14 

14 23 

98 45 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

Merge 

23 98 45 14 

14 23 45 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

Merge 

23 98 45 14 

14 23 45 98 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

23 98 45 14 

14 23 45 98 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 

23 98 45 14 

14 23 45 98 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 

Merge 

23 98 45 14 

14 23 45 98 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 

6 

Merge 

23 98 45 14 

14 23 45 98 



Sorting:  Merge Sort page 44 © Jonathan Cazalas 

67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 

67 

Merge 

23 98 45 14 6 

14 23 45 98 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

23 98 45 14 67 6 

14 23 45 98 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

Merge 

23 98 45 14 67 6 

14 23 45 98 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

Merge 

33 23 98 45 14 67 6 

14 23 45 98 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

Merge 

42 23 98 45 14 67 6 33 

14 23 45 98 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

Merge 

23 98 45 14 67 6 42 33 

14 23 45 98 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

Merge 

23 98 45 14 6 42 33 

14 23 45 98 6 

67 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

Merge 

23 98 45 14 6 33 

14 23 45 98 6 33 

67 42 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

Merge 

23 98 45 14 6 42 33 

14 23 45 98 6 33 42 

67 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

Merge 

23 98 45 14 67 6 42 33 

14 23 45 98 6 33 42 67 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

Merge 

23 98 45 14 67 6 42 33 

23 45 98 33 42 67 14 6 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

Merge 

23 98 45 14 67 6 42 33 

23 45 98 6 42 67 

6 

14 33 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

Merge 

23 98 45 14 67 6 42 33 

14 45 98 6 42 67 

6 14 

23 33 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

Merge 

23 98 45 14 67 6 42 33 

14 23 98 6 42 67 

6 14 23 

45 33 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

Merge 

23 98 45 14 67 6 42 33 

14 23 98 6 33 67 

6 14 23 33 

45 42 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

Merge 

23 98 45 14 67 6 42 33 

14 23 98 6 33 42 

6 14 23 33 42 

45 67 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

Merge 

23 98 45 14 67 6 42 33 

14 23 45 6 33 42 

6 14 23 33 42 45 

98 67 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

Merge 

23 98 45 14 67 6 42 33 

14 23 45 98 6 33 42 67 

6 14 23 33 42 45 67 
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67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

Merge 

23 98 45 14 67 6 42 33 

14 23 45 98 6 33 42 67 

6 14 23 33 42 45 67 98 



Sorting:  Merge Sort page 63 © Jonathan Cazalas 

67 45 23 14 6 33 98 42 

67 45 23 14 6 33 98 42 

45 23 14 98 

23 98 45 14 

67 6 33 42 

67 6 33 42 

23 98 45 14 67 6 42 33 

14 23 45 98 6 33 42 67 

6 14 23 33 42 45 67 98 
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67 45 23 14 6 33 98 42 

6 14 23 33 42 45 67 98 
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13 6 21 18 9 4 8 20 
0 7 

4 6 8 9 13 18 20 21 
0 7 

13 6 21 18 

0 3 

9 4 8 20 

4 7 

6 13 18 21 

0 3 

4 8 9 20 

4 7 

13 6 
0 1 

21 18 
2 3 

9 4 
4 5 

8 20 
6 7 

6 13 
0 1 

18 21 
2 3 

4 9 
4 5 

8 20 
6 7 

13 
0 

6 
1 

21 
2 

18 
3 

9 
4 

4 
5 

8 
6 

20 
7 

Sorting:  Merge Sort Example #2 
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Brief Interlude:  FAIL Picture 
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UCF Daily Bike Fail 

Courtesy of 
Sean Lunceford 
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UCF Weekly Bike Fail 

Courtesy of 
Sean Lunceford 
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 Merge Sort Code 
void MergeSort(int values[], int start, int end) { 
 int mid; 
 // Check if our sorting range is more than one element. 
 if (start < end) { 
 
  mid = (start+end)/2; 
 
  // Sort the first half of the values. 
  MergeSort(values, start, mid); 
 
  // Sort the last half of the values. 
  MergeSort(values, mid+1, end); 
 
  // Put it all together. 
  Merge(values, start, mid+1, end); 
 } 
} 
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 Merge Code 
 This code is longer 
 And a bit convoluted 

 But all it does it Merge the values from two arrays into 
one larger array 

 Of course, keeping the items in order 
 Just like the example shown earlier in the slides 

 Code can be found here on the website: 
 http://www.cs.ucf.edu/courses/cop3502/sum2011/progra

ms/sorting/mergesort.c 
 You need to fully understand how this code works 

 Including the Merge function! 

http://www.cs.ucf.edu/courses/cop3502/spr2011/programs/sorting/mergesort.c�
http://www.cs.ucf.edu/courses/cop3502/spr2011/programs/sorting/mergesort.c�
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 Merge Sort Analysis 
 Again, here are the steps of Merge Sort: 
1) Merge Sort the first half of the list 
2) Merge Sort the second half of the list 
3) Merge both halves together 

 
 Let T(n) be the running time of Merge Sort on an 

input size n 
 Then we have: 

 T(n) = (Time in step 1) + (Time in step 2) + (Time in step 3) 
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 Merge Sort Analysis 
 T(n):  running time of Merge Sort on input size n 
 Therefore, we have: 

 T(n) = (Time in step 1) + (Time in step 2) + (Time in step 3) 

 Notice that Step 1 and Step 2 are sorting 
problems also 
 But they are of size n/2 

 And the Merge function runs in O(n) time 
 Thus, we get the following equation for T(n) 
 T(n) = T(n/2) + T(n/2) + O(n) 
 T(n) = 2T(n/2) + O(n) 

…we are halving the input 
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 Merge Sort Analysis 
 T(n) = 2T(n/2) + O(n) 
 For the time being, let’s simplify O(n) to just n 
 T(n) = 2T(n/2) + n 
 and we know that T(1) = 1 
 So we now have a Recurrence Relation 
 Is it solved? 

 NO! 

 Why? 
 Damn T’s! 
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 Merge Sort Analysis 
 T(n) = 2T(n/2) + n       and       T(1) = 1 
 So we need to solve this, by removing the T(…)’s 

from the right hand side 
 Then T(n) will be in its closed form 
 And we can state its Big-O running time 
 We do this in steps 

 We replace n with n/2 on both sides of the equation 
 We plug the result back in 
 And then we do it again…till a “light goes off” and we 

see something 
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 Merge Sort Analysis 
 T(n) = 2T(n/2) + n 
 Do you know what T(n/2) equals 

 Does it equal 2,125 operations?  We don’t know! 

 So we need to develop an equation for T(n/2) 
 How? 
 Take the original equation shown above 
 Wherever you see an ‘n’, substitute with ‘n/2’ 
 T(n/2) = 2T(n/4) + n/2 
 So now we have an equation for T(n/2) 

 

 and       T(1) = 1 
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 Merge Sort Analysis 
 T(n) = 2T(n/2) + n 
 T(n/2) = 2T(n/4) + n/2 
 So now we have an equation for T(n/2) 

 We can take this equation and substitute it back into the 
original equation 

 T(n) = 2T(n/2) + n = 2[2T(n/4) + n/2] + n 
 now simplify 

 T(n) = 4T(n/4) + 2n 
 Same thing here:  do you know what T(n/4) equals? 
 No we don’t!  So we need to develop an eqn for T(n/4) 

 

 and       T(1) = 1 
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 Merge Sort Analysis 
 T(n) = 2T(n/2) + n 
 T(n/2) = 2T(n/4) + n/2 
 T(n) = 4T(n/4) + 2n 

 Same thing here:  do you know what T(n/4) equals? 
 No we don’t!  So we need to develop an eqn for T(n/4) 
 Take the eqn above and again substitute ‘n/2’ for ‘n’ 

 T(n/4) = 2T(n/8) + n/4 
 So now we have an equation for T(n/4) 

 We can take this equation and substitute it back the 
equation that we currently have in terms of T(n/4) 

 

 and       T(1) = 1 
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 Merge Sort Analysis 
 T(n) = 2T(n/2) + n 
 T(n/2) = 2T(n/4) + n/2 
 T(n) = 4T(n/4) + 2n 
 T(n/4) = 2T(n/8) + n/4 
 So now we have an equation for T(n/4) 

 We can take this equation and substitute it back the 
equation that we currently have in terms of T(n/4) 

 T(n) = 4T(n/4) + 2n = 4[2T(n/8) + n/4] + 2n 
 Simplify a bit 

 T(n) = 8T(n/8) + 3n 
 

 and       T(1) = 1 
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 Merge Sort Analysis 
 So now we have three equations for T(n): 
 T(n) = 2T(n/2) + n 
 T(n) = 4T(n/4) + 2n 
 T(n) = 8T(n/8) + 3n 

 
 So on the kth step/stage of the recursion, we get 

a generalized recurrence relation: 
 T(n) = 2kT(n/2k) +kn 

 
 Whew!  So now we’re done right? 

  1st step of recursion 
  2nd step of recursion 
  3rd step of recursion 

  kth step of recursion 

Wrong! 
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 Merge Sort Analysis 
 So on the kth step/stage of the recursion, we get 

a generalized recurrence relation: 
 T(n) = 2kT(n/2k) +kn 
 We need to get rid of the T(…)’s on the right side 
 Remember, we know T(1) = 1 
 So we make a substitution: 

 Let n = 2k 

 and also solve for k 
 k = log2n 

 Plug these back in… 
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 Merge Sort Analysis 
 So on the kth step/stage of the recursion, we get 

a generalized recurrence relation: 
 T(n) = 2kT(n/2k) +kn 

 Let n = 2k 

 and also solve for k 
 k = log2n 

 Plug these back in… 
 T(n) = 2log2nT(n/n) +(log2n)n 
 T(n) = n*T(1) + nlogn = n + n*logn 
 So Merge Sort runs in O(n*logn) time 
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 Merge Sort Summary 
 Avoids all the unnecessary swaps of n2 sorts 
 Uses recursion to split up a list until we get to 

“lists” of 1 or 0 elements 
 Uses a Merge function to merge (“sort”) these 

smaller lists into larger lists 
 Is MUCH faster than n2 sorts 
 Merge Sort runs in O(nlogn) time 
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WASN’T 
THAT 

THE COOLEST! 
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