
Computer Science Department
University of Central Florida

Sorting:
Merge Sort

COP 3502 – Computer Science I

Sorting: Merge Sort page 2 © Jonathan Cazalas

Announcement

 Exam 2 is next Friday
 March 30th

 Quiz 4 is on Monday

 March 26th
 The date has been changed

 Program 5 is now assigned

 Community Service due 3/28/12 by 12:30 PM

Sorting: Merge Sort page 3 © Jonathan Cazalas

Sorting: Merge Sort

 Problem with Bubble/Insertion/Selection Sorts:
 All of these sorts make a large number of

comparisons and swaps between elements
 As mentioned last class (while covering n2 sorts):

 Any algorithm that swaps adjacent elements can only
run so fast

 So one might ask is there a more clever way to
sort numbers
 A way that does not require looking at all these pairs

 Indeed, there are several ways to do this
 And one of them is Merge Sort

Sorting: Merge Sort page 4 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort
 Conceptually, Merge Sort works as follows:

 If the “list” is of length 0 or 1, then it is already sorted!
 Otherwise:
1. Divide the unsorted list into two sub-lists of about half

the size
 So if your list has n elements, you will divide that list into two

sub-lists, each having approximately n/2 elements:
2. Recursively sort each sub-list by calling recursively

calling Merge Sort on the two smaller lists
3. Merge the two sub-lists back into one sorted list

 This Merge is a function that we study on its own
 In a bit…

Sorting: Merge Sort page 5 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort
 Basically, given a list:

 You will split this list into two lists of about half the size
 Then you recursively call Merge Sort on each list
 What does that do?

 Each of these new lists will, individually, be split into two lists
of about half the size.

 So now we have four lists, each about ¼ the size of the
original list

 This keeps happening…the lists keep getting split into
smaller and smaller lists
 Until you get to a list of size 1 or size 0

 Then we Merge them into a larger, sorted list
…which is sorted!

Sorting: Merge Sort page 6 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort
 Incorporates two main ideas to improve its

runtime:
1) A small list will take fewer steps to sort than a

large list
2) Fewer steps are required to construct a sorted

list from two sorted lists than two unsorted lists
 For example:

 You only have to traverse each list once if they’re already
sorted

Sorting: Merge Sort page 7 © Jonathan Cazalas

Sorting: Merge Sort

 Merge function
 The key to Merge Sort: the Merge function
 Given two sorted lists, Merge them into one

sorted list
 Problem:

 You are given two arrays, each of which is already
sorted

 Your job is to efficiently combine the two arrays into one
larger array

 The larger array should contain all the values of the two
smaller arrays

 Finally, the larger array should be in sorted order

Sorting: Merge Sort page 8 © Jonathan Cazalas

Sorting: Merge Sort

 Merge function
 The key to Merge Sort: the Merge function
 Given two sorted lists, Merge them into one

sorted list
 If you have two lists:

 X (x1<x2<…<xm) and Y (y1<y2<…<yn)
 Merge these into one list: Z (z1<z2<…<zm+n)

 Example:
 List 1 = {3, 8, 9} and List 2 = {1, 5, 7}
 Merge(List 1, List 2) = {1, 3, 5, 7, 8, 9}

Sorting: Merge Sort page 9 © Jonathan Cazalas

Sorting: Merge Sort

 Merge function
 Solution:

 Keep track of the smallest value in each array that
hasn’t been placed, in order, in the larger array yet

 Compare these two smallest values from each array
 One of these MUST be the smallest of all the values in both

arrays that are left
 Place the smallest of the two values in the next location in

the larger array
 Adjust the smallest value for the appropriate array
 Continue this process until all values have been placed

in the large array

Sorting: Merge Sort page 10 © Jonathan Cazalas

3 10 23 54 1 5 25 75 X: Y:

Result:

 Example of Merge function:

Sorting: Merge Sort

Sorting: Merge Sort page 11 © Jonathan Cazalas

3 10 23 54 5 25 75

1

X: Y:

Result:

 Example of Merge function:

Sorting: Merge Sort

Sorting: Merge Sort page 12 © Jonathan Cazalas

10 23 54 5 25 75

1 3

X: Y:

Result:

Sorting: Merge Sort

 Example of Merge function:

Sorting: Merge Sort page 13 © Jonathan Cazalas

10 23 54 25 75

1 3 5

X: Y:

Result:

Sorting: Merge Sort

 Example of Merge function:

Sorting: Merge Sort page 14 © Jonathan Cazalas

23 54 25 75

1 3 5 10

X: Y:

Result:

Sorting: Merge Sort

 Example of Merge function:

Sorting: Merge Sort page 15 © Jonathan Cazalas

54 25 75

1 3 5 10 23

X: Y:

Result:

Sorting: Merge Sort

 Example of Merge function:

Sorting: Merge Sort page 16 © Jonathan Cazalas

54 75

1 3 5 10 23 25

X: Y:

Result:

Sorting: Merge Sort

 Example of Merge function:

Sorting: Merge Sort page 17 © Jonathan Cazalas

75

1 3 5 10 23 25 54

X: Y:

Result:

Sorting: Merge Sort

 Example of Merge function:

Sorting: Merge Sort page 18 © Jonathan Cazalas

1 3 5 10 23 25 54 75

X: Y:

Result:

Sorting: Merge Sort

 Example of Merge function:

Sorting: Merge Sort page 19 © Jonathan Cazalas

Sorting: Merge Sort

 Merge function
 The big question:

 How can we use this Merge function to sort an entire,
unsorted array?

 This function only “sorts” a specific scenario:
 You have to have two, already sorted, arrays

 Merge can then “sort” (merge) them into one larger
array

 So can we use this Merge function to somehow sort a
large, unsorted array???

 This brings us back to Merge Sort

Sorting: Merge Sort page 20 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort
 Again, here is the main idea for Merge Sort:
1) Sort the first half of the array, using Merge Sort
2) Sort the second half of the array, using Merge

Sort
 Now, we do indeed have a situation where we can use

the Merge function!
 Each half is already sorted!

3) So simply merge the first half of the array with
the second half.

 And this points to a recursive solution…

Sorting: Merge Sort page 21 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort
 Conceptually, Merge Sort works as follows:

 If the “list” is of length 0 or 1, then it is already sorted!
 Otherwise:
1. Divide the unsorted list into two sub-lists of about half

the size
 So if your list has n elements, you will divide that list into two

sub-lists, each having approximately n/2 elements:
2. Recursively sort each sub-list by calling recursively

calling Merge Sort on the two smaller lists
3. Merge the two sub-lists back into one sorted list

Sorting: Merge Sort page 22 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort
 Basically, given a list:

 You will split this list into two lists of about half the size
 Then you recursively call Merge Sort on each list
 What does that do?

 Each of these new lists will, individually, be split into two lists
of about half the size.

 So now we have four lists, each about ¼ the size of the
original list

 This keeps happening…the lists keep getting split into
smaller and smaller lists
 Until you get to a list of size 1 or size 0

 Then we Merge them into a larger, sorted list

Sorting: Merge Sort page 23 © Jonathan Cazalas

 Merge sort idea:
 Divide the array into two halves.
 Recursively sort the two halves (using merge sort).
 Use Merge to combine the two arrays.

sort sort

merge(0, n/2, n-1)

mergeSort(0, n/2-1) mergeSort(n/2, n-1)

Sorting: Merge Sort

Sorting: Merge Sort page 24 © Jonathan Cazalas

67 45 23 14 6 33 98 42

Sorting: Merge Sort page 25 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

Sorting: Merge Sort page 26 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

Sorting: Merge Sort page 27 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98

Sorting: Merge Sort page 28 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98

Merge

Sorting: Merge Sort page 29 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98

23

Merge

Sorting: Merge Sort page 30 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98

23 98

Merge

Sorting: Merge Sort page 31 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

23 98

Sorting: Merge Sort page 32 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

Merge

23 98

Sorting: Merge Sort page 33 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

14

Merge

23 98

Sorting: Merge Sort page 34 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

45

Merge

23 98 14

Sorting: Merge Sort page 35 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

Merge

98 45 14 23

Sorting: Merge Sort page 36 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

Merge

98 14

14

23 45

Sorting: Merge Sort page 37 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

Merge

23 14

14 23

98 45

Sorting: Merge Sort page 38 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

Merge

23 98 45 14

14 23 45

Sorting: Merge Sort page 39 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

Merge

23 98 45 14

14 23 45 98

Sorting: Merge Sort page 40 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

23 98 45 14

14 23 45 98

Sorting: Merge Sort page 41 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6

23 98 45 14

14 23 45 98

Sorting: Merge Sort page 42 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6

Merge

23 98 45 14

14 23 45 98

Sorting: Merge Sort page 43 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6

6

Merge

23 98 45 14

14 23 45 98

Sorting: Merge Sort page 44 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6

67

Merge

23 98 45 14 6

14 23 45 98

Sorting: Merge Sort page 45 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

23 98 45 14 67 6

14 23 45 98

Sorting: Merge Sort page 46 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6

14 23 45 98

Sorting: Merge Sort page 47 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

33 23 98 45 14 67 6

14 23 45 98

Sorting: Merge Sort page 48 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

42 23 98 45 14 67 6 33

14 23 45 98

Sorting: Merge Sort page 49 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 23 45 98

Sorting: Merge Sort page 50 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 6 42 33

14 23 45 98 6

67

Sorting: Merge Sort page 51 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 6 33

14 23 45 98 6 33

67 42

Sorting: Merge Sort page 52 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 6 42 33

14 23 45 98 6 33 42

67

Sorting: Merge Sort page 53 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 23 45 98 6 33 42 67

Sorting: Merge Sort page 54 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

23 45 98 33 42 67 14 6

Sorting: Merge Sort page 55 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

23 45 98 6 42 67

6

14 33

Sorting: Merge Sort page 56 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 45 98 6 42 67

6 14

23 33

Sorting: Merge Sort page 57 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 23 98 6 42 67

6 14 23

45 33

Sorting: Merge Sort page 58 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 23 98 6 33 67

6 14 23 33

45 42

Sorting: Merge Sort page 59 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 23 98 6 33 42

6 14 23 33 42

45 67

Sorting: Merge Sort page 60 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 23 45 6 33 42

6 14 23 33 42 45

98 67

Sorting: Merge Sort page 61 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 23 45 98 6 33 42 67

6 14 23 33 42 45 67

Sorting: Merge Sort page 62 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 23 45 98 6 33 42 67

6 14 23 33 42 45 67 98

Sorting: Merge Sort page 63 © Jonathan Cazalas

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

23 98 45 14 67 6 42 33

14 23 45 98 6 33 42 67

6 14 23 33 42 45 67 98

Sorting: Merge Sort page 64 © Jonathan Cazalas

67 45 23 14 6 33 98 42

6 14 23 33 42 45 67 98

Sorting: Merge Sort page 65 © Jonathan Cazalas

13 6 21 18 9 4 8 20
0 7

4 6 8 9 13 18 20 21
0 7

13 6 21 18

0 3

9 4 8 20

4 7

6 13 18 21

0 3

4 8 9 20

4 7

13 6
0 1

21 18
2 3

9 4
4 5

8 20
6 7

6 13
0 1

18 21
2 3

4 9
4 5

8 20
6 7

13
0

6
1

21
2

18
3

9
4

4
5

8
6

20
7

Sorting: Merge Sort Example #2

Sorting: Merge Sort page 66 © Jonathan Cazalas

Brief Interlude: FAIL Picture

Sorting: Merge Sort page 67 © Jonathan Cazalas

UCF Daily Bike Fail

Courtesy of
Sean Lunceford

Sorting: Merge Sort page 68 © Jonathan Cazalas

UCF Weekly Bike Fail

Courtesy of
Sean Lunceford

Sorting: Merge Sort page 69 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort Code
void MergeSort(int values[], int start, int end) {
 int mid;
 // Check if our sorting range is more than one element.
 if (start < end) {

 mid = (start+end)/2;

 // Sort the first half of the values.
 MergeSort(values, start, mid);

 // Sort the last half of the values.
 MergeSort(values, mid+1, end);

 // Put it all together.
 Merge(values, start, mid+1, end);
 }
}

Sorting: Merge Sort page 70 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Code
 This code is longer
 And a bit convoluted

 But all it does it Merge the values from two arrays into
one larger array

 Of course, keeping the items in order
 Just like the example shown earlier in the slides

 Code can be found here on the website:
 http://www.cs.ucf.edu/courses/cop3502/sum2011/progra

ms/sorting/mergesort.c
 You need to fully understand how this code works

 Including the Merge function!

http://www.cs.ucf.edu/courses/cop3502/spr2011/programs/sorting/mergesort.c�
http://www.cs.ucf.edu/courses/cop3502/spr2011/programs/sorting/mergesort.c�

Sorting: Merge Sort page 71 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort Analysis
 Again, here are the steps of Merge Sort:
1) Merge Sort the first half of the list
2) Merge Sort the second half of the list
3) Merge both halves together

 Let T(n) be the running time of Merge Sort on an

input size n
 Then we have:

 T(n) = (Time in step 1) + (Time in step 2) + (Time in step 3)

Sorting: Merge Sort page 72 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort Analysis
 T(n): running time of Merge Sort on input size n
 Therefore, we have:

 T(n) = (Time in step 1) + (Time in step 2) + (Time in step 3)

 Notice that Step 1 and Step 2 are sorting
problems also
 But they are of size n/2

 And the Merge function runs in O(n) time
 Thus, we get the following equation for T(n)
 T(n) = T(n/2) + T(n/2) + O(n)
 T(n) = 2T(n/2) + O(n)

…we are halving the input

Sorting: Merge Sort page 73 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort Analysis
 T(n) = 2T(n/2) + O(n)
 For the time being, let’s simplify O(n) to just n
 T(n) = 2T(n/2) + n
 and we know that T(1) = 1
 So we now have a Recurrence Relation
 Is it solved?

 NO!

 Why?
 Damn T’s!

Sorting: Merge Sort page 74 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort Analysis
 T(n) = 2T(n/2) + n and T(1) = 1
 So we need to solve this, by removing the T(…)’s

from the right hand side
 Then T(n) will be in its closed form
 And we can state its Big-O running time
 We do this in steps

 We replace n with n/2 on both sides of the equation
 We plug the result back in
 And then we do it again…till a “light goes off” and we

see something

Sorting: Merge Sort page 75 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort Analysis
 T(n) = 2T(n/2) + n
 Do you know what T(n/2) equals

 Does it equal 2,125 operations? We don’t know!

 So we need to develop an equation for T(n/2)
 How?
 Take the original equation shown above
 Wherever you see an ‘n’, substitute with ‘n/2’
 T(n/2) = 2T(n/4) + n/2
 So now we have an equation for T(n/2)

 and T(1) = 1

Sorting: Merge Sort page 76 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort Analysis
 T(n) = 2T(n/2) + n
 T(n/2) = 2T(n/4) + n/2
 So now we have an equation for T(n/2)

 We can take this equation and substitute it back into the
original equation

 T(n) = 2T(n/2) + n = 2[2T(n/4) + n/2] + n
 now simplify

 T(n) = 4T(n/4) + 2n
 Same thing here: do you know what T(n/4) equals?
 No we don’t! So we need to develop an eqn for T(n/4)

 and T(1) = 1

Sorting: Merge Sort page 77 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort Analysis
 T(n) = 2T(n/2) + n
 T(n/2) = 2T(n/4) + n/2
 T(n) = 4T(n/4) + 2n

 Same thing here: do you know what T(n/4) equals?
 No we don’t! So we need to develop an eqn for T(n/4)
 Take the eqn above and again substitute ‘n/2’ for ‘n’

 T(n/4) = 2T(n/8) + n/4
 So now we have an equation for T(n/4)

 We can take this equation and substitute it back the
equation that we currently have in terms of T(n/4)

 and T(1) = 1

Sorting: Merge Sort page 78 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort Analysis
 T(n) = 2T(n/2) + n
 T(n/2) = 2T(n/4) + n/2
 T(n) = 4T(n/4) + 2n
 T(n/4) = 2T(n/8) + n/4
 So now we have an equation for T(n/4)

 We can take this equation and substitute it back the
equation that we currently have in terms of T(n/4)

 T(n) = 4T(n/4) + 2n = 4[2T(n/8) + n/4] + 2n
 Simplify a bit

 T(n) = 8T(n/8) + 3n

 and T(1) = 1

Sorting: Merge Sort page 79 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort Analysis
 So now we have three equations for T(n):
 T(n) = 2T(n/2) + n
 T(n) = 4T(n/4) + 2n
 T(n) = 8T(n/8) + 3n

 So on the kth step/stage of the recursion, we get

a generalized recurrence relation:
 T(n) = 2kT(n/2k) +kn

 Whew! So now we’re done right?

 1st step of recursion
 2nd step of recursion
 3rd step of recursion

 kth step of recursion

Wrong!

Sorting: Merge Sort page 80 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort Analysis
 So on the kth step/stage of the recursion, we get

a generalized recurrence relation:
 T(n) = 2kT(n/2k) +kn
 We need to get rid of the T(…)’s on the right side
 Remember, we know T(1) = 1
 So we make a substitution:

 Let n = 2k

 and also solve for k
 k = log2n

 Plug these back in…

Sorting: Merge Sort page 81 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort Analysis
 So on the kth step/stage of the recursion, we get

a generalized recurrence relation:
 T(n) = 2kT(n/2k) +kn

 Let n = 2k

 and also solve for k
 k = log2n

 Plug these back in…
 T(n) = 2log2nT(n/n) +(log2n)n
 T(n) = n*T(1) + nlogn = n + n*logn
 So Merge Sort runs in O(n*logn) time

Sorting: Merge Sort page 82 © Jonathan Cazalas

Sorting: Merge Sort

 Merge Sort Summary
 Avoids all the unnecessary swaps of n2 sorts
 Uses recursion to split up a list until we get to

“lists” of 1 or 0 elements
 Uses a Merge function to merge (“sort”) these

smaller lists into larger lists
 Is MUCH faster than n2 sorts
 Merge Sort runs in O(nlogn) time

Sorting: Merge Sort page 83 © Jonathan Cazalas

Sorting: Merge Sort

WASN’T
THAT

THE COOLEST!

Sorting: Merge Sort page 84 © Jonathan Cazalas

Daily Demotivator

Computer Science Department
University of Central Florida

Sorting:
Merge Sort

COP 3502 – Computer Science I

	Sorting:�Merge Sort
	Announcement
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Sorting: Merge Sort Example #2
	Brief Interlude: FAIL Picture
	UCF Daily Bike Fail
	UCF Weekly Bike Fail
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Sorting: Merge Sort
	Daily Demotivator
	Sorting:�Merge Sort

