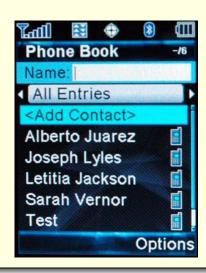


COP 3502 - Computer Science I

- Sorting Algorithms:
 - Fundamental problem in Computer Science
 - Sorting is done to make searching easier
 - Most programs do this:
 - Excel, Access, and others.



- Sorting Algorithms:
 - We will study several sorting algorithms in this class
 - Some are clearly much faster than others
 - For today, we will go over the "simple sorts"
 - These "simple sorts" all run in O(n²) time
 - Selection Sort
 - Insertion Sort
 - Bubble Sort
 - We will assume that the input to the algorithm is an array of values (sorted or not)

Selection Sort:

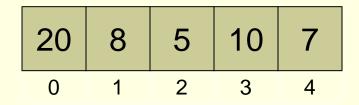
- Given: an array of n unsorted items
- The algorithm to sort n numbers is as follows:
 - 1) Find the minimum value in the list of n elements
 - Search from index 0 to index n-1
 - Swap that minimum value with the value in the first position
 - At index 0
 - 3) Repeat steps 1 and 2 for the remainder of the list
 - Example:
 - We now start at the 2nd position (index 1).
 - Find minimum value from index 1 to index n-1
 - Swap that minimum value with the value at index 1

Selection Sort:

- The algorithm to sort n numbers is as follows:
 - There is a FOR loop that iterates from i = 0 to i = n-1
 - FOR the ith element (as i ranges from 0 to n-1)
 - 1) Determine the smallest element in the rest of the array
 - To the right of the ith element
 - Swap the current ith element with the element identified in part (1) above (the smallest element)
 - Essentially:
 - The algorithm first picks the smallest element and swaps it into the first location.
 - Then it picks the next smallest element and swaps it into the next location, etc.

Selection Sort:

- Example:
 - Here is an array of 5 integers



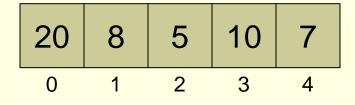
$$i = 0$$

Remember, we have a for loop

NOTE: i represents the index into the array

Selection Sort:

- Example:
 - Here is an array of 5 integers



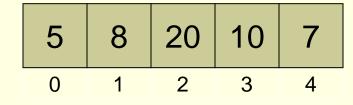
$$i = 0$$

- 5 (at index 2) is the smallest element
 - from the range i = 0 to 4
- So SWAP the value at index 2 with the value at index 0
 - SWAP the 5 and the 20

5	8	20	10	7
0	1	2	3	4

Selection Sort:

- Example:
 - Here is an array of 5 integers

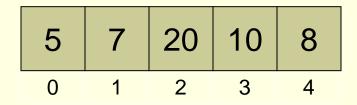


- 7 (at index 4) is the smallest element
 - from the range i = 1 to 4
- So SWAP the value at index 4 with the value at index 1
 - SWAP the 7 and the 8

5	7	20	10	8
0	1	2	3	4

Selection Sort:

- Example:
 - Here is an array of 5 integers



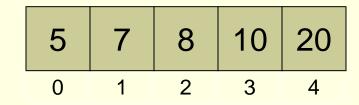
$$i = 2$$

- 8 (at index 4) is the smallest element
 - from the range i = 2 to 4
- So SWAP the value at index 4 with the value at index 2
 - SWAP the 8 and the 20

5	7	8	10	20
0	1	2	3	4

Selection Sort:

- Example:
 - Here is an array of 5 integers



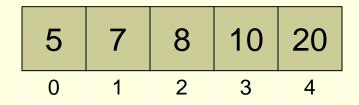
$$i = 3$$

- 10 (at index 3) is the smallest element
 - from the range i = 3 to 4
- So SWAP the value at index 3 with the value at index 3
 - SWAP the 10 and the 10 (so no swap really happened here)

5	7	8	10	20
0	1	2	3	4

Selection Sort:

- Example:
 - Here is an array of 5 integers

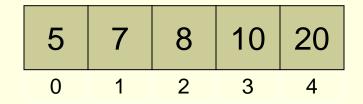


- 20 (at index 4) is the smallest element
 - from the range i = 4 to 4
- So SWAP the value at index 4 with the value at index 4
 - SWAP the 20 and the 20 (so no swap really happened here)

5	7	8	10	20
0	1	2	3	4

Selection Sort:

- Example:
 - Here is an array of 5 integers



$$i = 4$$

- The array is now in sorted order
- We see that the last iteration was not even necessary
 - In code our for loop could look like this:

for
$$(i = 0; i < n-1; i++)$$

So it won't even iterate on the n-1 step

Selection Sort:

- Analysis of Running Time:
 - During the first iteration
 - We "go through" all n items searching for the minimum
 - This is essentially n simple steps
 - During the second iteration, i starts at index 1
 - We "go through" n 1 items searching for the minimum
 - We do not need to account for the item at index 0
 - Cuz it is already in the correct position!
 - During the third iteration,
 - We "go through" n 2 items searching for the minimum
 - We do not need to account for the items at index 0 and 1
 - Cuz they are already in correct position

page 14

Sorting: O(n²) Algorithms

Selection Sort:

- Analysis of Running Time:
 - 4th iteration:
 - We will "go through" n 3 steps
 - 5th iteration
 - We will "go through" n 4 steps
 - **.** . . .
 - Final iteration
 - There will simply be one step
 - We can add up the TOTAL number of simple steps
 - TOTAL = n + (n-1) + (n-2) + (n-3) + ... + 3 + 2 + 1
 - Is this n² steps? Perhaps logn steps? Perhaps n steps?

Sorting: O(n²) Algorithms

Selection Sort:

- Analysis of Running Time:
 - TOTAL = n + (n-1) + (n-2) + (n-3) + ... + 3 + 2 + 1
 - We does this add up to?
 - We need to know this in order to give the Big-O
 - There is a neat trick!
 - Write the equation shown above
 - And then immediately underneath,
 - Write the equation again, but REVERSE the order of the terms
 - Then add the two equations together
 - See what happens
 - Finally, solve for TOTAL

Selection Sort:

Analysis of Running Time:

TOTAL = n + (n-1) + (n-2) + (n-3) + ... + 3 + 2 + 1
+ TOTAL = 1 + 2 + 3 + 4 + ... + (n-2) + (n-1) + n
$$2*TOTAL = (n+1) + (n+1) + (n+1) + ... + (n+1) + (n+1)$$

- How many terms of (n+1) do we have?
 - We have n of them!
- So that is n*(n+1)
- 2*TOTAL = n(n+1)
- TOTAL = n(n+1)/2
- So we see that Selection sort runs in O(n²) time.

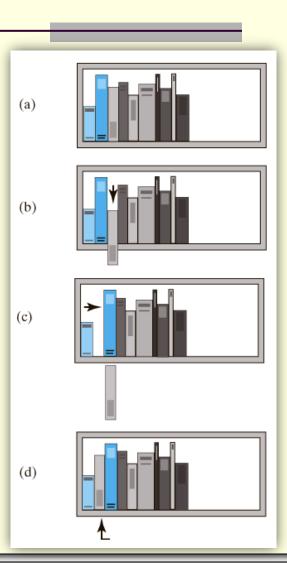
Insertion Sort:

- This is the sort that most humans apply when sorting documents
- Example: Playing Cards
 - Players usually keep cards in sorted order
 - When you pick up a new card
 - You make room for the new card and put into its proper place

- The card example demonstrates the basic idea of Insertion Sort
 - But the "idea" isn't exactly the same as sorting an array of items
- When sorting an array of items, we are ALREADY holding all of the items
- So how are we "inserting" an item when it is already in the list.
- We remove the items, one at a time, and then reinsert them into their proper positions

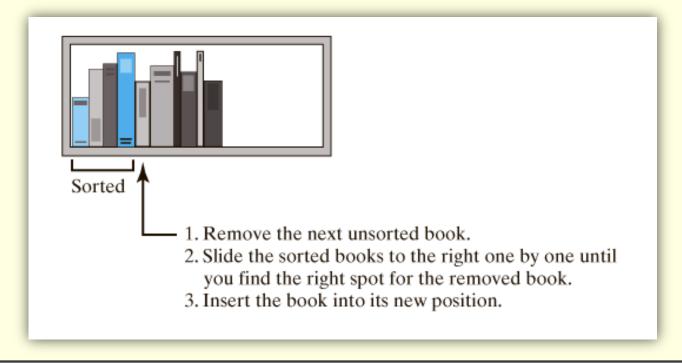
- Bookshelf example:
- If first two books are out of order:
 - Remove second book
 - Slide first book to right
 - Insert removed book into first slot
- Next, look at third book, if it is out of order:
 - Remove that book
 - Slide 2nd book to right
 - Insert removed book into 2nd slot
- Recheck first two books again
 - Etc.

- Bookshelf example:
 - This picture shows the "insertion" of the third book
 - The 3rd book is removed
 - It is compared with the 2nd book
 - The 2nd book is larger
 - So we slide the 2nd book into the 3rd spot
 - We then compare our original 3rd book with the 1st book
 - They are in order
 - So we simply insert the original 3rd book in the 2nd spot



Insertion Sort:

- Bookshelf example:
 - In general:

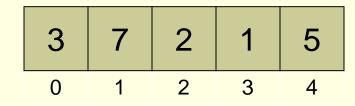


- Given: an array of n unsorted items
- The algorithm to sort n numbers is as follows:
 - Starting with the 2nd element,
 - Take each element, one by one, and
 - "Insert" it into a sorted list
 - How do we insert it?
 - continually SWAP it with the previous element until it has found its correct spot in the already sorted list
 - When we say already sorted list, we are referring to the elements to the left of our current element
 - Those elements are already in sorted order

- The algorithm to sort n numbers is as follows:
 - For the ith element
 - as i ranges from 1 to n-1 (week skip i = 0, the 1st element)
 - As long as the current element is smaller than the element before it
 - SWAP the two elements
 - Stop when the current element is bigger than the one before it OR there is no element before it
 - Meaning it has reached the front
 - An example should clarify...

Insertion Sort:

- Example:
 - Here is an array of 5 integers



$$i = 1$$

Remember, we have a for loop

FOR
$$i = 1$$
 to $n - 1$ {

WHILE the current element (at index i) is smaller than the element before it

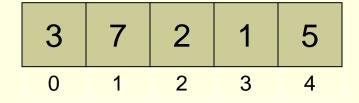
SWAP the two elements

}

NOTE: i represents the index into the array

Insertion Sort:

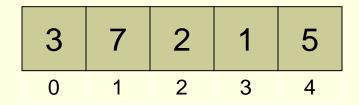
- Example:
 - Here is an array of 5 integers



- 7 is the value at index 1
 - Compare 7 to the value at index 0 (which is 3)
- 7 is greater than 3
 - So there is nothing to swap. Simply re-insert 7 at its place.

3	7	2	1	5
0	1	2	3	4

- Example:
 - Here is an array of 5 integers



- 2 is the value at index 2
 - Compare 2 to the value at index 1 (which is 7)
- 2 is smaller than 7
 - So we SWAP
- BUT we are NOT done!

Insertion Sort:

- Example:
 - Here is an array of 5 integers

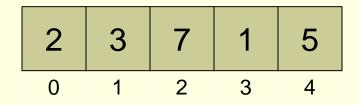
3	7	2	1	5
0	1	2	3	4

- We must compare the 2 to the value at index 0
 - which is 3
- 2 is smaller than 3
 - So we SWAP

2	3	7	1	5
0	1	2	3	4

Insertion Sort:

- Example:
 - Here is an array of 5 integers



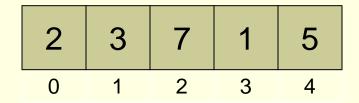
$$i = 3$$

- 1 is the value at index 3
 - Compare 1 to the value at index 2 (which is 7)
- 1 is smaller than 7
 - So we SWAP
- 1 is smaller than 3
 - So we SWAP

Continue comparing 1 to the element before it

Insertion Sort:

- Example:
 - Here is an array of 5 integers



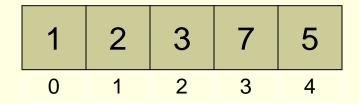
$$i = 3$$

- 1 is smaller than the value at index 0 (which is 2)
 - So we SWAP
- There is no element "before" 1 at this point
 - So we simply insert

1	2	3	7	5
0	1	2	3	4

Insertion Sort:

- Example:
 - Here is an array of 5 integers



$$i = 4$$

- 5 is the value at index 4
 - Compare 5 to the value at index 3 (which is 7)
- 5 is smaller than 7
 - So we SWAP
- Again, we are not done

Sorting: O(n²) Algorithms page 30

Insertion Sort:

- Example:
 - Here is an array of 5 integers

1	2	3	7	5
0	1	2	3	4

- We must now compare 5 to the next element before it
- So compare 5 to 3
- 5 is greater than 3, so we can stop and insert 5

1	2	3	5	7
0	1	2	3	4

- Analysis of Running Time:
 - The number of steps varies based on the input
 - If the list is already in sorted order (best case)
 - During each iteration, the ith element is only compared with one previous element
 - This results in a linear run-time, or O(n)
 - If the list is sorted in reverse order (worst case)
 - During each iteration, the ith element will have to go all the way over to the left
 - During each iteration, the entire, sorted subsection of the array will be shifted over to allow the ith element to go into the front
 - This results in a quadratic run-time, or O(n²)
 - We care about worst case; Insertion Sort runs in O(n²).

Brief Interlude: FAIL Picture

Bubble Sort:

- Basic idea:
 - You always compare consecutive elements
 - Going left to right
 - Whenever two elements are out of place,
 - SWAP them
 - At the end of a single iteration,
 - the maximum element will be in the last spot
 - Now you simply repeat this n times
 - where n is the number of elements being sorted
 - On each pass, one more maximal element will be put into place

Bubble Sort:

- Example:
 - Here is an array of 8 integers: 6, 2, 5, 7, 3, 8, 4, 1
 - On a single pass of the algorithm, here is the state of the array:

<u>2, 6,</u> 5, 7, 3, 8, 4, 1

2, <u>5, 6</u>, 7, 3, 8, 4, 1

2, 5, 6, 7, 3, 8, 4, 1

2, 5, 6, 3, 7, 8, 4, 1

2, 5, 6, 3, 7, 8, 4, 1

2, 5, 6, 3, 7, 4, 8, 1

2, 5, 6, 3, 7, 4, <u>1, 8</u> (8 is now in place!)

Note:

We'd have to do this **EIGHT** more times to guarantee a sorted list!

The "swapped" elements are underlined.

Of course, a swap only occurs as needed.

Bubble Sort:

- Truth about Bubble Sort:
- NOBODY uses Bubble Sort
- NOBODY.
- EVER.
- 'cept this guy:

- Reason:
- cuz Bubble sort is extremely inefficient

Sorts that only swap adjacent elements

- Selection, Insertion, and Bubble sort are examples of sorts where we swap adjacent elements
- LIMITATION of these types of sorts:
 - They can only run so fast.
- We can see this once we define an inversion:
 - Inversion: a pair of numbers in a list that is out of order
 - Given this list: 3, 1, 8, 4, 5
 - The inversions are the following pairs of numbers:
 - (3,1), (8, 4), and then (8, 5)

Sorts that only swap adjacent elements

- LIMITATION of these types of sorts:
 - They can only run so fast.
- We can see this once we define an inversion:
 - When we <u>swap adjacent elements</u> in an array
 - We can remove AT MOST one inversion from the array
 - Now, if it were possible to <u>swap non-adjacent elements</u>,
 - We could remove multiple inversions at the same time
 - Consider the following list: 8, 2, 3, 4, 5, 6, 7, 1
 - Only 8 and 1 are out of order
 - Swapping these two values would remove every inversion
 - It would normally require 13 inversions to get the list sorted if we were limited to swapping only adjacent elements

page 39

Sorting: O(n²) Algorithms

Sorts that only swap adjacent elements

- Run-time Analysis:
 - Any sorting algorithm that swaps adjacent elements is constrained by the total number of inversions in that array
 - Consider the average case:
 - How many pairs of numbers are there in a list of n numbers?

$$\binom{n}{2} = \frac{n(n-1)}{2}$$
 You le cours

You learn this in Discrete and certain Math courses. For now, just trust me on this.

Of these pairs, on average, HALF of them will be inverted.

$$\frac{n(n-1)}{4}$$

We simply divided the previous amount by 2, thus leaving HALF of the pairs left.

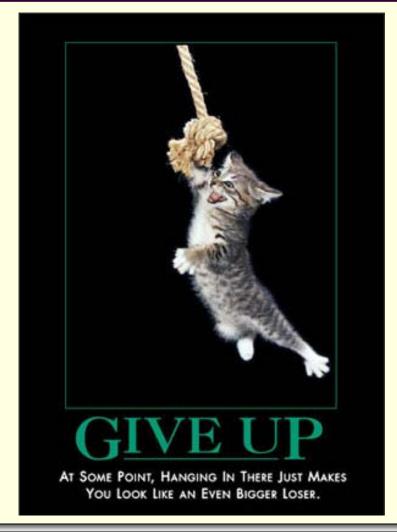
Sorting: O(n²) Algorithms

Sorts that only swap adjacent elements

- Run-time Analysis:
 - So, on average, an unsorted array will have $\frac{n(n-1)}{4}$ inversions
 - Therefore, any sorting algorithm that only swaps adjacent elements will have an O(n²) run-time.

WASN'T THAT AMAZING!

Daily Demotivator





COP 3502 – Computer Science I