Binary Trees:
Practice Problems

,

r | Computer Science Department
. University of Central Florida

COP 3502 — Computer Science |

Binary Trees: Practice Problems

Warmup Problem 1:
Searching for a node in a BST

int find (struct tree node *current _ptr, int val) {
// Check i1f there are nodes In the tree.
iIT (current ptr '= NULL) {
// Found the value at the root.
iIf (current ptr->data == val)
return 1;
// Search to the left.
iIT (val < current_ptr->data)
return find(current_ptr->left, val);
— // Or.._search to the right.
else

return find(current_ptr->right, val);

return O;

© Jonathan Cazalas Binary Trees: Practice Problems page 2

S

Binary Trees: Practice Problems

Warmup Problem 2:

Searching for a node in an arbitrary tree
Not a BST
Doesn’t have the ordering property

Int Find(struct tree_node *current _ptr, iInt val) {
1T (current_ptr '= NULL) {
iIT (current_prt->data == val)
return 1;
return (Find(current_ptr->left, val) ||

Find(current_ptr->right, val))

return O;

© Jonathan Cazalas Binary Trees: Practice Problems page 3

=7

Binary Trees: Practice Problems

Warmup Problem 3:
Summing the values of nodes in a tree

int add(struct tree_node *current ptr) {
1T (current_ptr = NULL)
return current ptr->data +
add(current_ptr->left)+ add(current ptr->right);

else
return O;

© Jonathan Cazalas Binary Trees: Practice Problems page 4

=7

Binary Trees: Practice Problems

Count Nodes:

Write a function that counts (and returns) the
number of nodes in a binary tree

int count(struct tree node *root) {
1T (current_ptr = NULL)
return 1 + count(root->left)+ add(root->right);

else
return O;

Detalls:

If the “root” Is not NULL, then the root increases our count
Shown by the return of 1

We then call count on the left and right subtrees of root

© Jonathan Cazalas Binary Trees: Practice Problems page 5

=7

Binary Trees: Practice Problems

Count Leaf Nodes:

Write a function that counts (and returns) the
number of leaf nodes in a binary tree

int numLeaves(struct tree node *p) {
i1IT (p!'= NULL) {
iIT (p—>left == NULL && p->right == NULL)
return 1;
else

return numLeaves(p->left) + numLeaves(p->right);

return O;

© Jonathan Cazalas Binary Trees: Practice Problems page 6

=7

Binary Trees: Practice Problems

Print Even Nodes:

Write a function that prints out all even nodes in a
binary search tree

int printEven(struct tree node *current ptr) {
iIT (current_ptr = NULL) {
iIT (current_ptr->data % 2 == 0)
printf(“%d “, current_ptr->data);

printEven(current ptr->left);
printEven(current _ptr->right);

This Is basically just a traversal

Except we added a condition (IF) statement before the
print statement

© Jonathan Cazalas Binary Trees: Practice Problems page 7

=7

Binary Trees: Practice Problems

Print Odd Nodes (in ascending order):

Write a function that prints out all odd nodes, in a
binary search tree, in ascending order

iInt printOddAsc(struct tree_node *current ptr) {
iIT (current_ptr = NULL) {
printOddAsc (current_ptr->left);
iIT (current_ptr->data % 2 == 1)

printf(“%d ““, current_ptr->data);
printOddAsc (current_ptr->right);

The question requested ascending order
This requires an inorder traversal
So we simply changed the order of the statements

© Jonathan Cazalas Binary Trees: Practice Problems page 8

Binary Trees: Practice Problems

Compute Height:

Write a recursive function to compute the height of
a tree

Defined as the length of the longest path from the root to a
leaf node

For the purposes of this problem,
a tree with only one node has height 1
and an empty tree has height O

Your function should make use of the following struct:

struct tree node {
Int data;
struct tree node* left;

struct tree node* right;

© Jonathan Cazalas Binary Trees: Practice Problems page 10

=¥

Binary Trees: Practice Problems

Compute Height:

int height(struct tree node* root) {
int leftHeight, rightHeight;

if(root == NULL)
return O;

leftHeight = height(root->left);

rightHeight = height(root->right);

iT(leftHeight > rightHeight)
return leftHeight + 1;

return rightHeight + 1;

© Jonathan Cazalas Binary Trees: Practice Problems page 11

Binary Trees: Practice Problems

Find Largest:

Write a recursive function that returns a pointer to
the node containing the largest element in a BST
This one should be easy:
This is a BST, meaning it has the ordering property

So where is the largest node located
either the root or the greatest node in the right subtree

Your function should make use of the following struct:

struct tree node {
Int data;
struct tree node* left;

struct tree node* right;

© Jonathan Cazalas Binary Trees: Practice Problems page 12

Binary Trees: Practice Problems

Find Largest:

struct node* largest(struct tree _node *B) {

// 1T B 1s NULL, there 1s no node
iIT (B == NULL)
return NULL;
// If B’s right i1s NULL, that means B i1s the largest
else if (B->right == NULL)
return B;

// SO 1f B’s right was NOT equal to NULL,
// There 1s a right subtree of B.
// Which means that the largest value 1s in this
// subtree. So recursively call B’s right.
else
return largest(B->right);

© Jonathan Cazalas

Binary Trees: Practice Problems page 13

Binary Trees: Practice Problems

Number of Single Children:

In a binary tree, each node can have zero, one, or
two children

Write a recursive function that returns the number
of nodes with a single child

Your function should make use of the following
o struct:

struct tree node {
Int data;
struct tree node* left;

struct tree node* right;

© Jonathan Cazalas Binary Trees: Practice Problems page 14

=¥

Binary Trees: Practice Problems

Number of Single Children:

int one (struct tree_node *p) {
iIT (p '= NULL) {
iIT (p->left == NULL)
iIT (p—>right = NULL)
return 1 + one(p->right);
else it (p->right == NULL)

iIT (p->left = NULL)
return 1 + one(p->left);

else
return one(p->left) + one(p->right);

© Jonathan Cazalas Binary Trees: Practice Problems page 15

Binary Trees: Practice Problems

WASN'T
THAT

Daily Demotivator

You'in Avwars Miss 100% ofF THE SHOTS You Don't TAKE,
AMD, STATISTICALLY SPEAKIMG, ¥9P% OF THE SHOTS You Do.

© Jonathan Cazalas Binary Trees: Practice Problems

page 17

Binary Trees:
Practice Problems

,

r | Computer Science Department
. University of Central Florida

COP 3502 — Computer Science |

	Binary Trees:�Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Brief Interlude: FAIL Picture
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Daily Demotivator
	Binary Trees:�Practice Problems

