

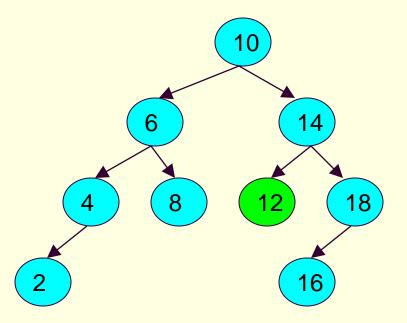
COP 3502 – Computer Science I



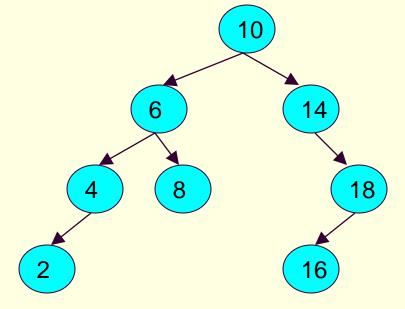
- Deletion From a Binary Search Tree
  - Deleting nodes from a BST requires some thought
  - There are 3 possible cases
    - And we deal with each in a different fashion
  - The 3 cases are:
  - 1) Deleting of a leaf node
  - Deleting a node with one child
  - 3) Deleting a node with two children
  - We examine each case separately



- Deleting a Leaf Node
  - This one is pretty easy



Initial BST with node 12 marked for deletion



BST after deletion of node 12

© Jonathan Cazalas Binary Trees: Deletion page 3



- Deleting a Leaf Node
  - This one is pretty easy
  - We start by identifying the parent of the node we wish to delete
    - Which we actually do in ALL three cases
  - We then free that node, accessing it via parent:
    - free(parent->left) or
    - free(parent->right)
  - Now we need to simply update the parent's left or right pointer, signifying that the parent no longer has that child



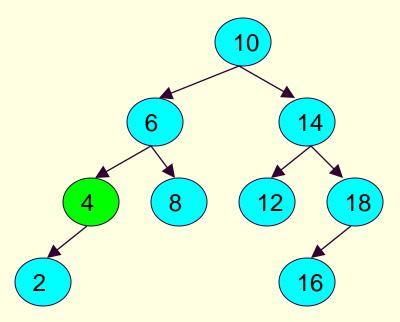
- Deleting a Leaf Node
  - This one is pretty easy
  - We start by identifying the parent of the node we wish to delete
    - Which we actually do in ALL three cases
  - Just set the appropriate node to NULL:
    - parent->left = NULL or
    - parent->right = NULL
  - So now instead of pointing to the toBeDeleted node
    - The parent simply points to NULL



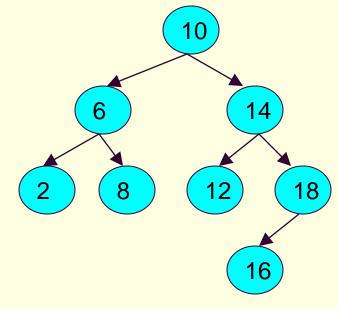
- Deleting a Node with One Child
  - This one is also not too complicated
    - But does require more thought than deleting a leaf node
  - Again, we start by finding the parent
    - meaning, the parent of the node we want to delete
  - The parent's pointer to the node is changed to now point to the deleted node's child
  - This has the effect of lifting up the deleted nodes child by one level in the tree
    - All great-great-...-great-grandchildren will lose one 'great' from their kinship designations



- Deleting a Node with One Child
  - parent->left = parent->left->left;



Initial BST with node 4 marked for deletion



BST after deletion of node 4. Node 2 has taken the place of the deleted node

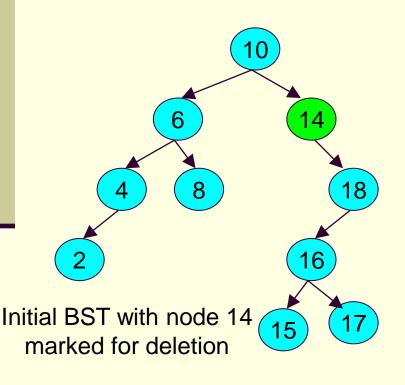
© Jonathan Cazalas Binary Trees: Deletion page 7

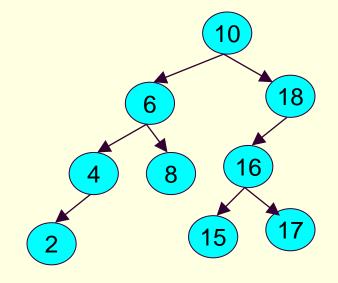


- Deleting a Node with One Child
  - The previous example illustrated when we delete a <u>left node that has a left child</u>
  - Notice that it makes no difference whether the only child is a left child or a right child
  - The next example illustrated when we delete a right node that has a right child
    - Again, the deletion simply lifts up the subtree of the deleted node by one level
  - The other possibilities is a left node that has a right child or a right node that has a left child



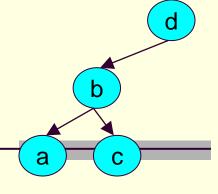
- Deleting a Node with One Child
  - parent->right = parent->right->right;





BST after deletion of node 14. Node 18 has taken the place of the deleted node and the entire subtree moved up one level.

© Jonathan Cazalas Binary Trees: Deletion page 9

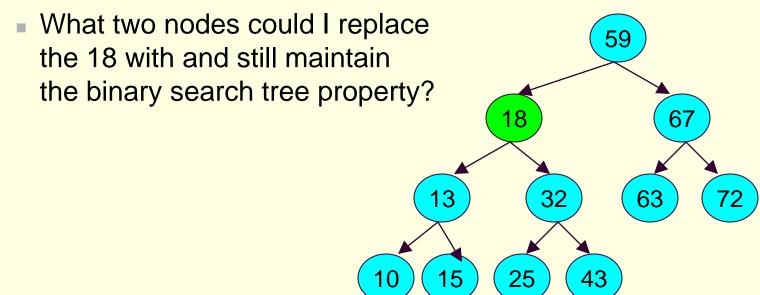


- Deleting a Node with two children
  - This is the scenario that requires a bit of thought
    - If we wish to delete node b (example above)
    - We can't just raise up b's children
      - since node d can't use its left pointer to point to more than one child
      - d's left can't point to both node a and node c

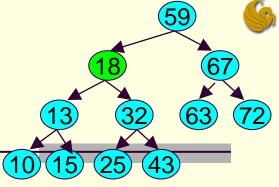
 So think about what we need to do in order to maintain the structure (and ordering property)



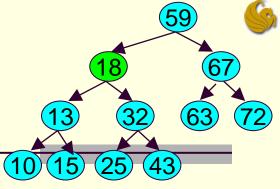
- Deleting a Node with two children
  - Consider this example tree
  - We want to delete node 18
  - Ask yourself:



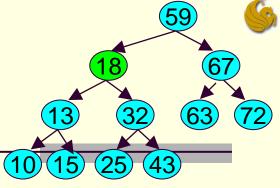
© Jonathan Cazalas Binary Trees: Deletion page 11



- Deleting a Node with two children
  - Remember:
    - All the nodes to the left of 18 MUST be smaller than 18
    - All the nodes right of 18 MUST be greater than 18
  - Thus, if we delete 18
    - there are only two nodes we could put at 18's position without causing serious repercussions:
    - 1) The **maximum value in the left subtree** of node 18
      - Which is 15
    - 2) The minimum value in the right subtree of node 18
      - Which is 25



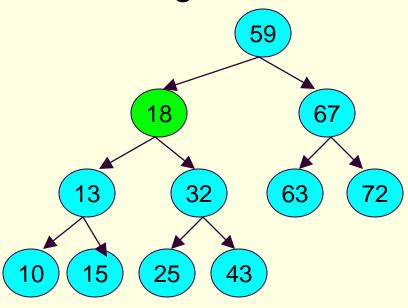
- Deleting a Node with two children
  - Thus, if we delete 18
    - There are two possible nodes that could go into 18's position:
    - 1) Node 15 (greatest value in left subtree)
    - 2) Node 25 (smallest value in right subtree)
    - We simply pick one of these to put at 18's position
      - We essentially <u>copy</u> the node to 18's position
    - Then we have to delete the actual node that we just copied
      - Meaning, if we copy node 15 into 18's positon
      - We will have two 15s
      - So we now need to delete the leaf node 15



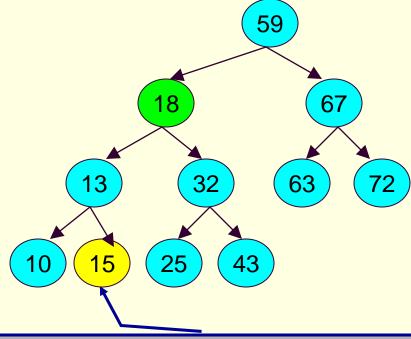
- Deleting a Node with two children
  - We are guaranteed that this node
    - Node 15 in this example
  - Has AT MOST only one child
    - Meaning it will be easy to delete!
  - Why is that? How is this guarantee true?
    - The greatest node in a left subtree cannot have two children
      - If it did, its right child would be greater than it
    - Similarly, the <u>smallest node in a right subtree</u> cannot have two children
      - If it did, its left child would be smaller than it



Deleting a Node with two children (example)



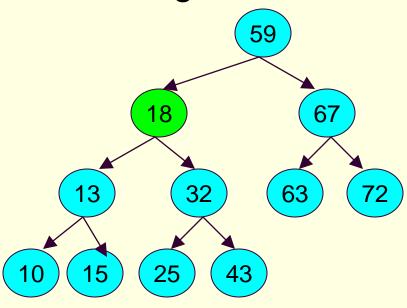
Initial BST with node 18 marked for deletion. Note that this node has two children with values 13 and 32.



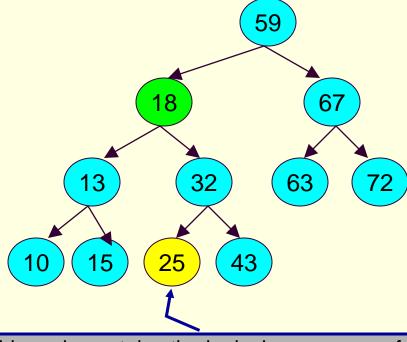
This node contains the logical <u>predecessor</u> of the node to be deleted. Note that it is the <u>greatest node</u> in the <u>left subtree</u> of the node to be deleted.



Deleting a Node with two children (example)



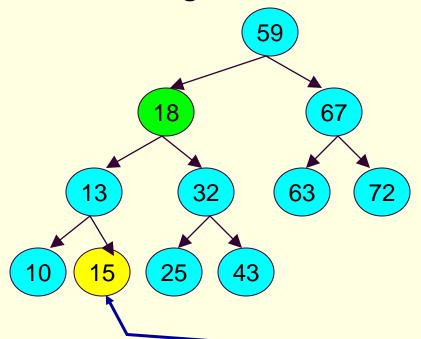
Initial BST with node 18 marked for deletion. Note that this node has two children with values 13 and 32.



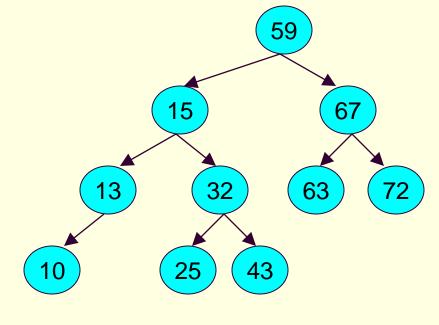
This node contains the logical <u>successor</u> of the node to be deleted. Note that it is the <u>smallest node</u> in the <u>right subtree</u> of the node to be deleted.



Deleting a Node with two children (example)



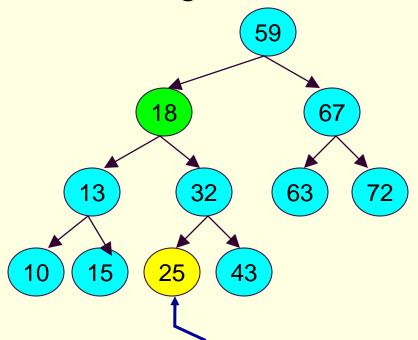
This node contains the logical <u>predecessor</u> of the node to be deleted. Note that it is the <u>greatest node</u> in the <u>left subtree</u> of the node to be deleted.



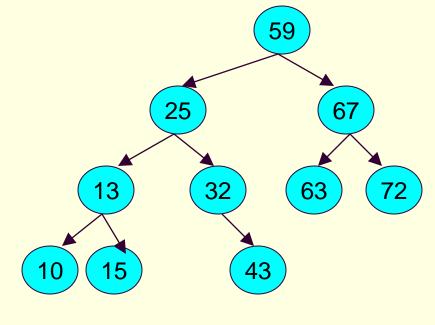
The BST after the deletion of node 18 using the replacement by the logical predecessor node.



Deleting a Node with two children (example)



This node contains the logical <u>successor</u> of the node to be deleted. Note that it is the <u>smallest node</u> in the <u>right subtree</u> of the node to be deleted.



The BST after the deletion of node 18 using the replacement by the logical successor node.



- Deleting a Node with two children
  - For the previous example,
    - The nodes that we copied to 18's position were both leaf nodes
    - How did this help?
      - Once copied over, we need to delete those nodes
      - Since they are leaves, this process is easy
    - But what if they are not leaf nodes?
      - Meaning, they have one child
        - Remember, we are guaranteed that they have AT MOST one kid
      - It is still easy!
      - We would simply be deleting a node with one child
      - Which simply "lifts" up that subtree one level



#### Brief Interlude: FAIL Picture



© Jonathan Cazalas Binary Trees: Deletion page 20



## Daily UCF Bike Fail



Courtesy of Kristina Lister



- Deleting a Node with two children
  - There's a lot going on for deletion
  - So when you examine the code,
    - You will see many auxiliary functions used, such as:
    - 1) **findNode**: returns a pointer to a node in a given tree that stores a particular value
    - 2) parent: finds the parent of a given node in a given binary tree
    - 3) minval: finds the minimum value in a given binary tree
    - 4) maxVal: finds the maximum value in a given binary tree
    - 5) isLeaf: determines if a node is a leaf node or not
    - 6) hasOnlyLeftChild: determines if a node ONLY has a left child
    - 7) hasOnlyRightChild: determines if a node ONLY has right kid



- Auxiliary functions:
  - findNode: returns a pointer to a node in a given tree that stores a particular value
    - The first step in deletion is finding the node in the tree
    - This is basically the search function from last time
    - The arguments to the function are:
      - A pointer to the root of some tree (or subtree)
      - The value we are searching for
    - IF found, the function returns a pointer to the node
    - Else, NULL is returned



- Auxiliary functions:
  - findNode: returns a pointer to a node in a given tree that stores a particular value



- Auxiliary functions:
  - parent: finds the parent of a given node in a given binary tree
    - Remember: we need to know the parent of the node we wish to delete
    - This allows us to modify the left/right pointers of the parent, effectively removing the child node
    - The arguments to the function are:
      - The root of the tree
      - 2) A pointer to the node we want to find the parents of
    - If found, a pointer to the parent node is returned



- Auxiliary functions:
  - parent: finds the parent of a given node in a given binary tree



- Auxiliary functions:
  - minVal: finds the minimum value in a given binary tree
    - Remember: when we delete a node with two children
    - We need to replace that node with either:
      - The minimum value in the right subtree, or
      - The maximum value in the left subtree
    - The argument to the function is the root of the tree
    - The function simply returns a pointer to the node containing the minimum value



- Auxiliary functions:
  - minVal: finds the minimum value in a given binary tree
    - Remember:
      - The minimum value in a given binary tree will either be the root OR it will be found in the left subtree

```
struct tree_node* minVal(struct tree_node *root) {
      // Root stores the minimal value.
      if (root->left == NULL)
            return root;

      // The left subtree of the root stores the minimal value.
      else
            return minVal(root->left);
}
```



- Auxiliary functions:
  - maxVal: finds the maximum value in a given binary tree
    - Remember:
      - The maximum value in a given binary tree will either be the root OR it will be found in the right subtree

```
struct tree_node* maxVal(struct tree_node *root) {
    // Root stores the maximal value.
    if (root->right == NULL)
        return root;

    // The right subtree of the root stores the maximal value.
    else
        return maxVal(root->right);
}
```



- Auxiliary functions:
  - isLeaf: determines if a node is a leaf node or not
    - Remember:
    - The easiest form of deletion is when the node to be deleted is a leaf node
      - That's why we need this function
    - How can you tell if a node is a leaf?
      - Leaves don't have kids!
      - BOTH the left and right pointers will be NULL

```
// Returns 1 if node is a leaf node, 0 otherwise.
int isLeaf(struct tree_node *node) {
    return (node->left == NULL && node->right == NULL);
}
```



- Auxiliary functions:
  - hasOnlyLeftChild: determines if a node ONLY has a left child
    - Remember:
    - The second easiest form of deletion is when the node to be deleted has only one child
      - We simply delete that node and "lift" the child subtree 1 level
    - How would you determine if a node has only a left kid?

```
// Returns 1 if node has a left child and no right child.
int hasOnlyLeftChild(struct tree_node *node) {
    return (node->left!= NULL && node->right == NULL);
}
```



- Auxiliary functions:
  - hasOnlyRightChild: determines if a node ONLY has a right child
    - Same as with left child
    - Just we're now checking for an only right child

```
// Returns 1 if node has a right child and no left child.
int hasOnlyRightChild(struct tree_node *node) {
    return (node->left== NULL && node->right != NULL);
}
```



- Deletion From a Binary Search Tree
  - So now we can examine the full delete function
  - Too large to put on these slides
  - Here's the link to the binary tree code:
    - http://www.cs.ucf.edu/courses/cop3502/spr2012/programs/trees/bintree.c

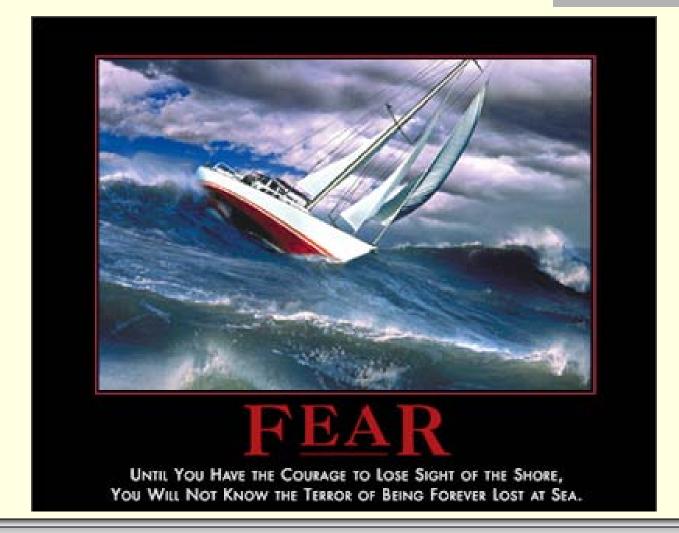


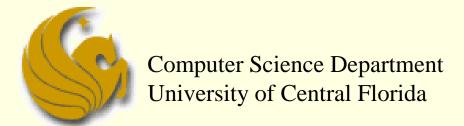
# **WASN'T** THAT STUNNING!

© Jonathan Cazalas Binary Trees: Deletion page 34



## Daily Demotivator





COP 3502 – Computer Science I