
Computer Science Department
University of Central Florida

Binary Trees:
Search & Insert

COP 3502 – Computer Science I

Binary Trees: Search & Insert page 2© Jonathan Cazalas

Binary Search Tree

 Binary Search Trees
 Ordering Property:

 For each node N, all the values stored in the left subtree
of N are LESS than the value stored in N.

 Also, all the values stored in the right subtree of N are
GREATER than the value stored in N.

 Why might this property be a desireable one?
 Searching for a node is super fast!

 Normally, if we search through n nodes, it takes O(n) time
 But notice what is going on here:

 This ordering property of the tree tells us where to search
 We choose to look to the left or look to the right of a node
 We are HALVING the search space …O(log n) time

Binary Trees: Search & Insert page 3© Jonathan Cazalas

Binary Search Tree: Searching

 Binary Search Trees
 Searching for a node:

 Algorithm:
1) IF the tree is NULL, return false.

ELSE
2) Check the root node. If the value we are searching for

is in the root, return 1 (representing “found”).
3) If not, if the value is less than that stored in the root

node, recursively search in the left subtree.
4) Otherwise, recursively search in the right subtree.

Binary Trees: Search & Insert page 4© Jonathan Cazalas

Binary Search Tree: Searching

 Binary Search Trees
 Searching for a node (Code):

int find (struct tree_node *current_ptr, int val) {
// Check if there are nodes in the tree.
if (current_ptr != NULL) {

// Found the value at the root.
if (current_ptr->data == val)

return 1;
// Search to the left.
if (val < current_ptr->data)

return find(current_ptr->left, val);
// Or...search to the right.
else

return find(current_ptr->right, val);
}
else

return 0;
}

Binary Trees: Search & Insert page 5© Jonathan Cazalas

Binary Search Tree: Creation

 Insertion into a Binary Search Tree
 Before we can insert a node into a BST, what is

the one obvious thing that we must do?
 We have to actually create the node that we want

to insert
 malloc space for the node
 And save appropriate data value(s) into it

 Here’s our struct from last time:
struct tree_node {

int data;
struct tree_node *left;
struct tree_node *right;

}

Binary Trees: Search & Insert page 6© Jonathan Cazalas

Binary Search Tree: Creation

 Creating a Binary Search Tree
 In main, we simply make a pointer of type struct

tree_node and initialize it to NULL
 struct tree_node *my_root = NULL;

 So this is the ROOT of our tree

 You then get your values to insert into the tree
 This could be automated
 You could have the user enter a value(s)
 However you want (this really isn’t that important)

 We then call the create_node function to create
a new node with this specific value

Binary Trees: Search & Insert page 7© Jonathan Cazalas

Binary Search Tree: Creation

 Creating a Binary Search Tree
 create_node function:

struct tree_node* create_node(int val) {

// Allocate space for the node
struct tree_node* temp;
temp = (struct tree_node*)malloc(sizeof(struct tree_node));

// Initialize the fields
temp->data = val;
temp->left = NULL;
temp->right = NULL;

// Return a pointer to the created node.
return temp;

}

Binary Trees: Search & Insert page 8© Jonathan Cazalas

Binary Search Tree: Insertion

 Insertion (of nodes) into a Binary Search Tree
 Now that we have nodes, it is time to insert!
 BSTs must maintain their ordering property

 Smaller items to the left of any given root
 And greater items to the right of that root

 So when we insert, we MUST follow these rules
 You simply start at the root and either

1) Go right if the new value is greater than the root
2) Go left if the new value is less than the root

 Keep doing this till you come to an empty position
 An example will make this clear…

Binary Trees: Search & Insert page 9© Jonathan Cazalas

Binary Search Tree: Insertion

 Insertion into a Binary Search Tree
 Let’s assume we insert the following data values,

in their order of appearance into an initially empty
BST:
 10, 14, 6, 2, 5, 15, and 17

 Step 1:
 Create a new node with value 10
 Insert node into tree
 The tree is currently empty
 New node becomes the root

10

Binary Trees: Search & Insert page 10© Jonathan Cazalas

Binary Search Tree: Insertion

 Insertion into a Binary Search Tree
 10, 14, 6, 2, 5, 15, and 17

 Step 2:
 Create a new node with value 14
 This node belongs in the right subtree

of node 10
 Since 14 > 10

 The right subtree of node 10 is empty
 So node 14 becomes the right

child of node 10

10

14

Binary Trees: Search & Insert page 11© Jonathan Cazalas

Binary Search Tree: Insertion

 Step 3:
 Create a new node with value 6
 This node belongs in the left subtree

of node 10
 Since 6 < 10

 The left subtree of node 10 is empty
 So node 6 becomes the left child

of node 10

 Insertion into a Binary Search Tree
 10, 14, 6, 2, 5, 15, and 17

10

146

Binary Trees: Search & Insert page 12© Jonathan Cazalas

Binary Search Tree: Insertion

 Insertion into a Binary Search Tree
 10, 14, 6, 2, 5, 15, and 17

 Step 4:
 Create a new node with value 2
 This node belongs in the left subtree

of node 10
 Since 2 < 10

 The root of the left subtree is 6
 The new node belongs in the left

subtree of node 6
 Since 2 < 6

 So node 2 becomes the left child of
node 6

10

146

2

Binary Trees: Search & Insert page 13© Jonathan Cazalas

Binary Search Tree: Insertion

 Insertion into a Binary Search Tree
 10, 14, 6, 2, 5, 15, and 17

 Step 5:
 Create a new node with value 5
 This node belongs in the left subtree

of node 10
 Since 5 < 10

 The new node belongs in the left
subtree of node 6

 Since 5 < 6
 And the new node belongs in the right

subtree of node 2
 Since 5 > 2

10

146

2

5

Binary Trees: Search & Insert page 14© Jonathan Cazalas

Binary Search Tree: Insertion

 Insertion into a Binary Search Tree
 10, 14, 6, 2, 5, 15, and 17

 Step 6:
 Create a new node with value 15
 This node belongs in the right subtree

of node 10
 Since 15 > 10

 The new node belongs in the right
subtree of node 14

 Since 15 > 14
 The right subtree of node 14 is empty
 So node 15 becomes right child of

node 14

10

146

2

5

15

Binary Trees: Search & Insert page 15© Jonathan Cazalas

Binary Search Tree: Insertion

 Insertion into a Binary Search Tree
 10, 14, 6, 2, 5, 15, and 17

 Step 7:
 Create a new node with value 17
 This node belongs in the right subtree

of node 10
 Since 17 > 10

 The new node belongs in the right
subtree of node 14

 Since 17 > 14
 And the new node belongs in the right

subtree of node 15
 Since 17 > 15

10

146

2

5

15

17

Binary Trees: Search & Insert page 16© Jonathan Cazalas

Binary Search Tree: Insertion

 Insertion into a Binary Search Tree
 In main, we have the following:

struct tree_node *my_root=NULL, *temp_node;

// ***************
// OTHER CODE HERE
// ***************

While (something_here) {
printf("What value would you like to insert?");
scanf("%d", &val);
temp_node = create_node(val); // Create the node.

// Insert the value.
my_root = insert(my_root, temp_node);

// more code

Binary Trees: Search & Insert page 17© Jonathan Cazalas

Binary Search Tree: Insertion

 Insertion into a Binary Search Tree
 Here’s our basic plan to do this recursively:

1) If the tree is empty, just return a pointer to a node
containing the new value
 cuz this value WILL be the ROOT

2) Otherwise, see which subtree the node should be
inserted into
 How?
 Compare the value to insert with the value stored at the root.

3) Based on this comparison, recursively either insert
into the right subtree, or into the left subtree.

Binary Trees: Search & Insert page 18© Jonathan Cazalas

Binary Search Tree: Insertion

 Insertion into a Binary Search Tree
 And here’s the matching code:

struct tree_node* insert(struct tree_node *root, struct tree_node *element) {

// Inserting into an empty tree.
if (root == NULL)

return element;
else {

// element should be inserted to the right.
if (element->data > root->data)

root->right = insert(root->right, element);
// element should be inserted to the left.
else

root->left = insert(root->left, element);
// Finally, return the root pointer of the updated tree.
return root;

}
}

Binary Trees: Search & Insert page 19© Jonathan Cazalas

Binary Search Tree: Creation

 Creating a Binary Search Tree
 What we get from this:

 Creating a BST is really nothing more than a series of
insertions (calling the insert function over and over)

1. You simply get the values
2. Create the nodes
3. And then call this insert function over and over

 For every node

Binary Trees: Search & Insert page 20© Jonathan Cazalas

Brief Interlude: Human Stupidity

Binary Trees: Search & Insert page 21© Jonathan Cazalas

Binary Search Tree: Sum Nodes

 Summing the Nodes of a Binary Search Tree
 How would you do this?
 If it is not clear, think about how you did this with

linked lists.
 How did you sum the nodes in a linked list?
 You simply traversed the list and summed the values

 Similarly, we traverse the tree and sum the values
 How do we traverse the tree?

 We already went over that
 You have three traversal options: preorder, inorder,

postorder...so choose one

Binary Trees: Search & Insert page 22© Jonathan Cazalas

Binary Search Tree: Sum Nodes

 Summing the Nodes of a Binary Search Tree
 But it’s really even easier than this!
 All we do is add the values (root, left, and right)

and then return the answer
 Here’s the code, and notice how succinct it is:

int add(struct tree_node *current_ptr) {
if (current_ptr != NULL)

return current_ptr->data +
add(current_ptr->left)+ add(current_ptr->right);

else
return 0;

}

Binary Trees: Search & Insert page 23© Jonathan Cazalas

Binary Search Tree: Search

 Search of an Arbitrary Binary Tree
 We’ve seen how to search for a node in a binary

search tree
 Now consider the problem if the tree is NOT a

binary search tree
 It does not have the ordering property

 You could simply perform one of the traversal
methods, checking each node in the process
 Unfortunately, this won’t be O(log n) anymore
 It degenerates to O(n) since we possibly check all nodes

Binary Trees: Search & Insert page 24© Jonathan Cazalas

Binary Search Tree: Search

 Search of an Arbitrary Binary Tree
 Here’s another way we could do this
 The whole idea here is to be comfortable with

binary trees:
int Find(struct tree_node *current_ptr, int val) {

if (current_ptr != NULL) {
if (current_prt->data == val)

return 1;
return (Find(current_ptr->left, val) ||

Find(current_ptr->right, val))
}
else

return 0;
}

Binary Trees: Search & Insert page 25© Jonathan Cazalas

Binary Trees: Search & Insert

 Class Exercise:
 Write a function that prints out all the values in a

binary tree that are greater than or equal to a
value passed to the function.

 Here is the prototype:
 void PrintBig(struct tree_node
*current_ptr, int value);

Binary Trees: Search & Insert page 26© Jonathan Cazalas

Binary Trees: Search & Insert

WASN’T
THAT

FABULOUS!

Binary Trees: Search & Insert page 27© Jonathan Cazalas

Daily Demotivator

Computer Science Department
University of Central Florida

Binary Trees:
Search & Insert

COP 3502 – Computer Science I

	Binary Trees:�Search & Insert
	Binary Search Tree
	Binary Search Tree: Searching
	Binary Search Tree: Searching
	Binary Search Tree: Creation
	Binary Search Tree: Creation
	Binary Search Tree: Creation
	Binary Search Tree: Insertion
	Binary Search Tree: Insertion
	Binary Search Tree: Insertion
	Binary Search Tree: Insertion
	Binary Search Tree: Insertion
	Binary Search Tree: Insertion
	Binary Search Tree: Insertion
	Binary Search Tree: Insertion
	Binary Search Tree: Insertion
	Binary Search Tree: Insertion
	Binary Search Tree: Insertion
	Binary Search Tree: Creation
	Brief Interlude: Human Stupidity
	Binary Search Tree: Sum Nodes
	Binary Search Tree: Sum Nodes
	Binary Search Tree: Search
	Binary Search Tree: Search
	Binary Trees: Search & Insert
	Binary Trees: Search & Insert
	Daily Demotivator
	Binary Trees:�Search & Insert

