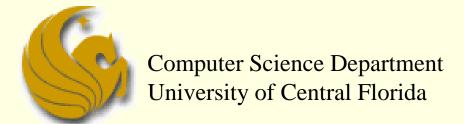
Binary Trees



COP 3502 - Computer Science I

Outline

- Tree Stuff
 - Trees
 - Binary Trees
 - Implementation of a Binary Tree
- Tree Traversals Depth First
 - Preorder
 - Inorder
 - Postorder
- Breadth First Tree Traversal
- Binary Search Trees

Trees:

- Another Abstract Data Type
- Data structure made of nodes and pointers
 - Much like a linked list
 - The difference between the two is how they are organized.
 - A linked list represents a linear structure
 - A predecessor/successor relationship between the nodes of the list
 - A <u>tree</u> represents a <u>hierarchical relationship</u> between the nodes (ancestral relationship)
 - A node in a tree can have several successors, which we refer to as <u>children</u>
 - A nodes predecessor would be its <u>parent</u>

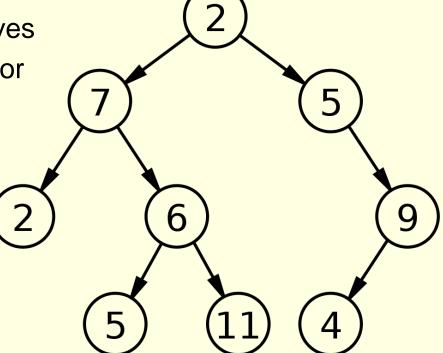
Trees:

- General Tree Information:
 - Top node in a tree is called the root
 - the root node has no parent above it...cuz it's the root!
 - Every node in the tree can have "children" nodes
 - Each child node can, in turn, be a parent to its children and so on
 - Nodes having no children are called leaves
 - Any node that is not a root or a leaf is an interior node
 - The height of a tree is defined to be the length of the longest path from the root to a leaf in that tree.
 - A tree with only one node (the root) has a height of zero.

■ Trees:

- Here's a purty picture of a tree:
 - 2 is the root
 - 2, 5, 11, and 4 are leaves

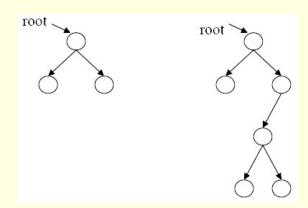
7, 5, 6, and 9 are interior nodes



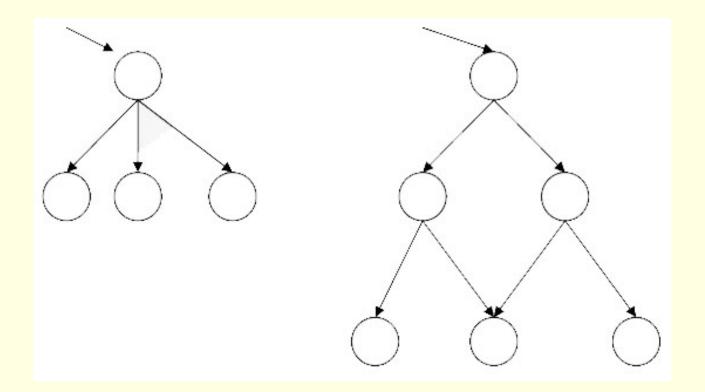
Binary Trees:

- A tree in which each node can have a <u>maximum of</u> <u>two children</u>
 - Each node can have no child, one child, or two children
 - And a child can only have one parent
 - Pointers help us to identify if it is a right child or a left one

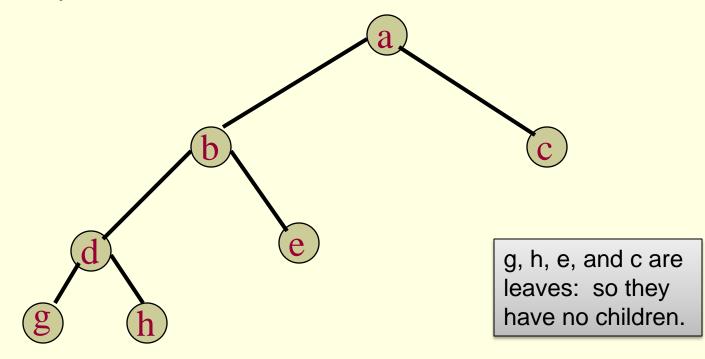
Examples of two Binary Trees:



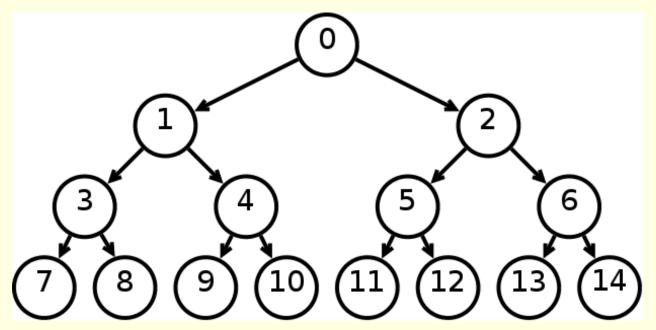
Examples of trees that are NOT Binary Trees:



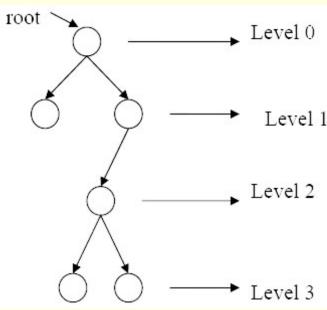
- More Binary Tree Goodies:
 - A <u>full</u> binary tree:
 - Every node, other than the leaves, has two children



- More Binary Tree Goodies:
 - A <u>complete</u> binary tree:
 - Every level, except possibly the last, is completely filled, and all nodes are as far left as possible.



- More Binary Tree Goodies:
 - The root of the tree is at level 0
 - The level of any other node in the tree is one more than the level of its parent
 - Total # of nodes (n) in a complete binary tree:
 - $n = 2^{h+1} 1$ (maximum)
 - Height (h) of the tree:
 - $h = \log((n + 1)/2)$
 - If we have 15 nodes
 - $h = \log(16/2) = \log(8) = 3$



- Implementation of a Binary Tree:
 - A binary tree has a natural implementation using linked storage
 - Each node of a binary tree has both <u>left</u> and <u>right subtrees</u> that can be <u>reached with pointers</u>:

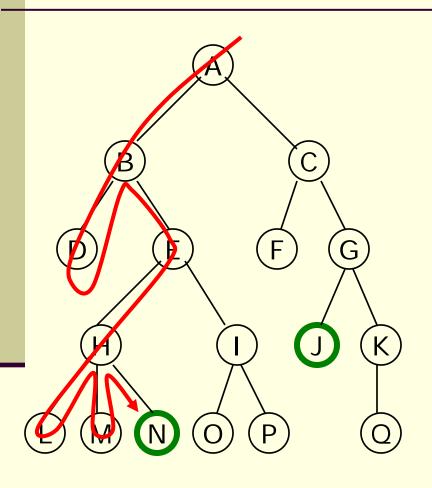
```
struct tree_node {
    int data;
    struct tree_node *left_child;
    struct tree_node *right_child;
}
```

```
left_child data right_child
```


■ Traversal of Binary Trees:

- We need a way of zipping through a tree for searching, inserting, etc.
 - But how can we do this?
 - If you remember...
 - Linked lists are traversed from the head to the last node ...sequentially
 - Can't we just "do that" for binary trees.?.
 - NO! There is no such natural linear ordering for nodes of a tree.
- Turns out, there are THREE ways/orderings of traversing a binary tree:
 - Preorder, Inorder, and Postorder

But before we get into the nitty gritty of those three, let's describe..



- A depth-first search (DFS)
 explores a path all the way to
 a leaf before backtracking and
 exploring another path
- For example, after searching A, then B, then D, the search backtracks and tries another path from B
- Node are explored in the order ABDEHLMNIOPCF GJKQ
- N will be found before J

- Traversal of Binary Trees:
 - There are 3 ways/orderings of traversing a binary tree (all 3 are depth first search methods):
 - Preorder, Inorder, and Postorder
 - These <u>names</u> are chosen <u>according to the step at</u> <u>which the root node is visited</u>:
 - With <u>preorder</u> traversal, the <u>root is visited before</u> its left and right subtrees.
 - With <u>inorder</u> traversal, the <u>root is visited between</u> the subtrees.
 - With <u>postorder</u> traversal, the <u>root is visited after</u> both subtrees.

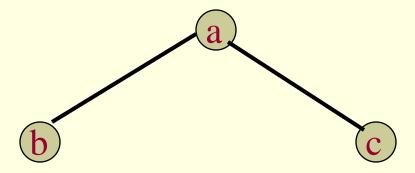
Tree Traversals - Preorder

- Preorder Traversal
 - the root is visited before its left and right subtrees
 - For the following example, the "<u>visiting</u>" of a node is <u>represented by printing</u> that node
 - Code for Preorder Traversal:

```
void preorder (struct tree_node *p) {
    if (p != NULL) {
        printf("%d ", p->data);
        preorder(p->left_child);
        preorder(p->right_child);
    }
}
```


Tree Traversals - Preorder

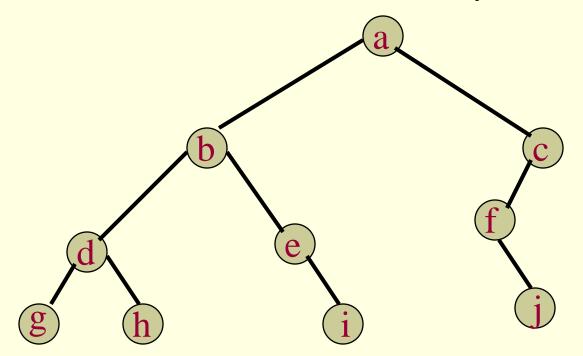
- Preorder Traversal Example 1
 - the root is visited before its left and right subtrees



a b c

Tree Traversals - Preorder

Preorder Traversal – Example 2



Order of Visiting Nodes: a b d g h e i c f j

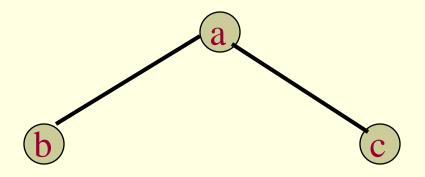
Tree Traversals - Inorder

- Inorder Traversal
 - the root is visited between the left and right subtrees
 - For the following example, the "<u>visiting</u>" of a node is <u>represented by printing</u> that node
 - Code for Inorder Traversal:

```
void inorder (struct tree_node *p) {
    if (p != NULL) {
        inorder(p->left_child);
        printf("%d ", p->data);
        inorder(p->right_child);
    }
}
```


Tree Traversals - Inorder

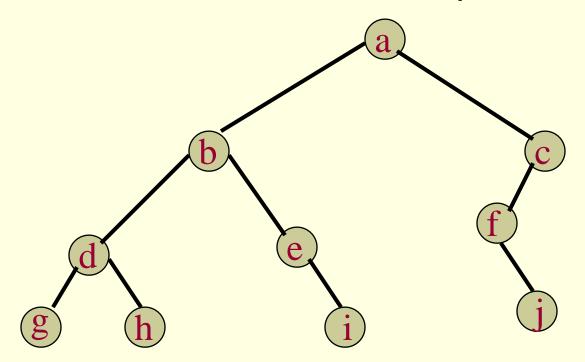
- Inorder Traversal Example 1
 - the root is visited between the subtrees



bac

Tree Traversals - Inorder

Inorder Traversal – Example 2



Order of Visiting Nodes: g d h b e i a f j c

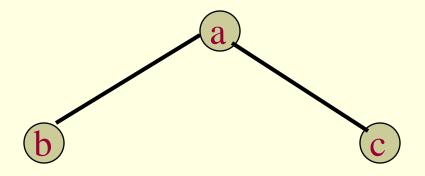
Tree Traversals – Postorder

- Postorder Traversal
 - the root is visited after both the left and right subtrees
 - For the following example, the "<u>visiting</u>" of a node is <u>represented by printing</u> that node
 - Code for Postorder Traversal:

```
void postorder (struct tree_node *p) {
    if (p != NULL) {
        postorder(p->left_child);
        postorder(p->right_child);
        printf("%d ", p->data);
    }
}
```


Tree Traversals – Postorder

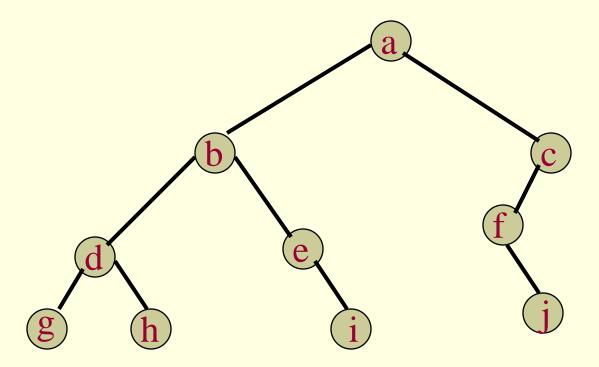
- Postorder Traversal Example 1
 - the root is visited after both subtrees



b c a

Tree Traversals – Postorder

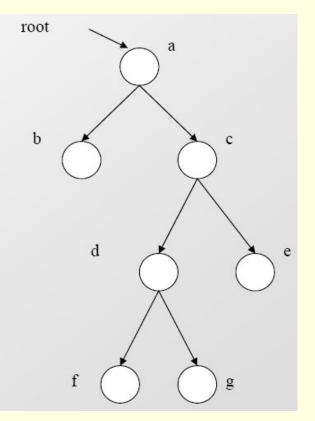
Postorder Traversal – Example 2



Order of Visiting Nodes: ghdiebjfca

Tree Traversals

- Final Traversal Example
 - Preorder: abcdfge
 - Inorder: b a f d g c e
 - Postorder: b f g d e c a

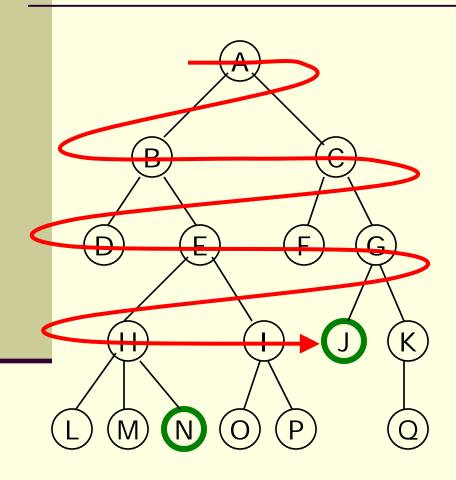


Daily UCF Bike Fail

Unfortunately, this was here at UCF near the Student Union.

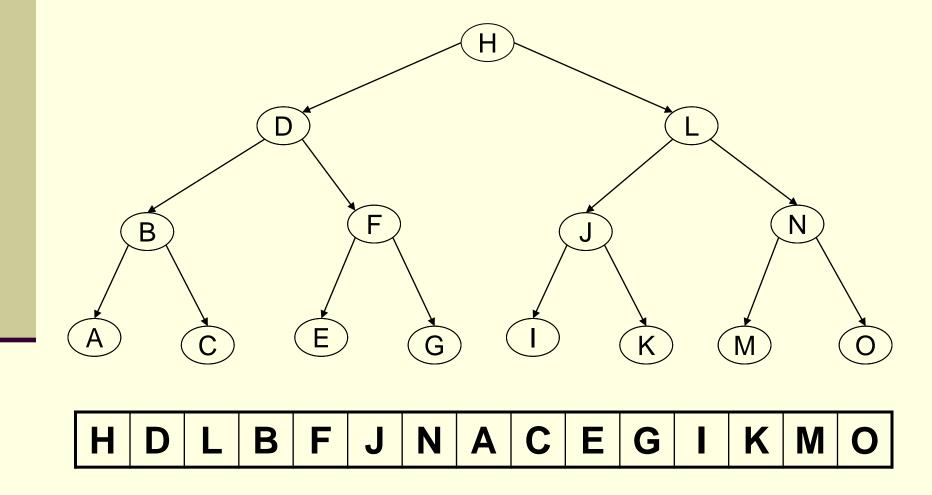
Picture courtesy of Joe Gravelle.

Breadth-First Traversal



- A <u>breadth-first</u> search (BFS) <u>explores nodes nearest the</u> <u>root</u> before exploring nodes further away
- For example, after searching A, then B, then C, the search proceeds with D, E, F, G
- Node are explored in the order ABCDEFGHIJKLM NOPQ
- J will be found before N

Breadth-First Traversal



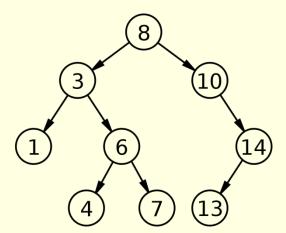
© Jonathan Cazalas Binary Trees page 28

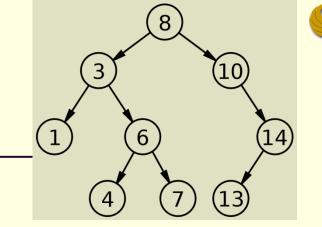
Breadth-First Traversal

- Coding the Breadth-First Traversal
 - Let's say you want to Traverse and Print all nodes?
 - Think about it, how would you make this happen?
 - SOLUTION:
 - 1) Enqueue the root node.
 - while (more nodes still in queue) {
 <u>Dequeue</u> node at front (of queue)
 <u>Print</u> this node (that we just dequeued)
 <u>Enqueue</u> its <u>children</u> (if applicable): <u>left then right</u>
 ...continue till no more nodes in queue

© Jonathan Cazalas Binary Trees page 29

- Binary Search Trees
 - We've seen how to traverse binary trees
 - But it is not quite clear how this data structure helps us
 - What is the purpose of binary trees?
 - What if we added a restriction...
 - Consider the following binary tree:
 - What pattern can you see?

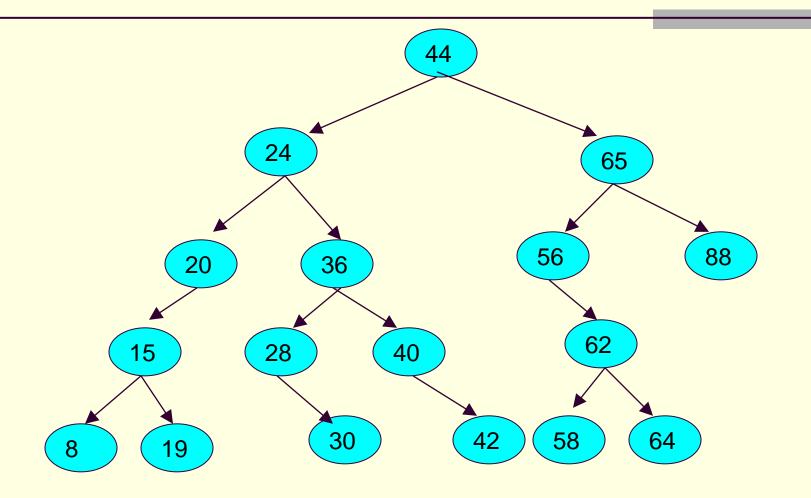




- Binary Search Trees
 - What pattern can you see?
 - For each node N, all the values stored in the left subtree of N are LESS than the value stored in N.
 - Also, all the values stored in the right subtree of N are GREATER than the value stored in N.
 - Why might this property be a desireable one?
 - Searching for a node is super fast!
 - Normally, if we search through n nodes, it takes O(n) time
 - But notice what is going on here:
 - This <u>ordering property</u> of the tree <u>tells us where to search</u>
 - We choose to look to the left OR look to the right of a node
 - We are **HALVING** the search space ... **O(log n)** time

Binary Search Trees

- Details:
 - ALL of the <u>data values</u> in the <u>left subtree</u> of each node are <u>smaller</u> than the <u>data value in the node itself</u> (root of said subtree)
 - Stated another way, the value of the node itself is larger than the value of every node in its left subtree.
 - ALL of the <u>data values</u> in the <u>right subtree</u> of each node are <u>larger</u> than the <u>data value in the node itself</u> (root of the subtree)
 - Stated another way, the value of the node itself is smaller than the value of every node in its right subtree.
 - Both the left and right subtrees, of any given node, are themselves binary search trees.



A Binary Search Tree

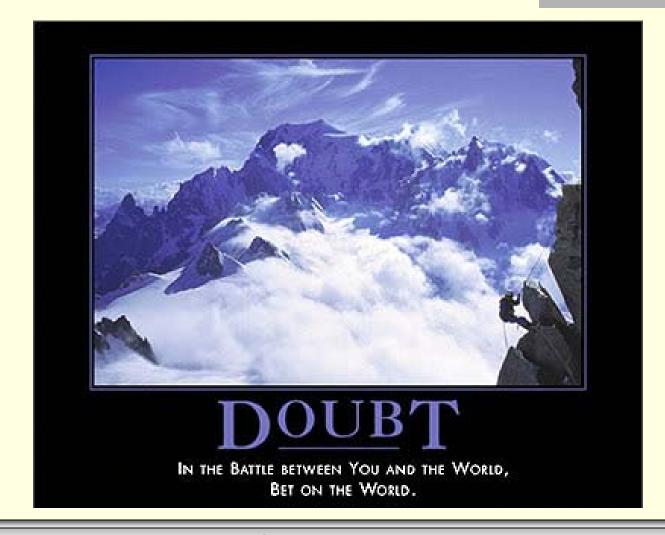
- Binary Search Trees
 - Details:
 - A binary search tree, commonly referred to as a <u>BST</u>, is <u>extremely useful for efficient searching</u>
 - Basically, a BST amounts to <u>embedding the binary search</u> into the data structure itself.
 - Notice how the root of every subtree in the BST on the previous page is the root of a BST.
 - This ordering of nodes in the tree means that <u>insertions</u> <u>into a BST</u> are <u>not placed arbitrarily</u>
 - Rather, there is a specific way to insert
 - ...and that is for next time

Binary Trees

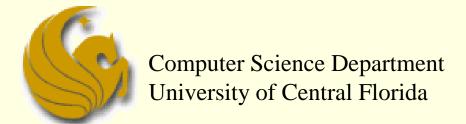
WASN'T THAT HISTORIC!

© Jonathan Cazalas Binary Trees page 35

Daily Demotivator

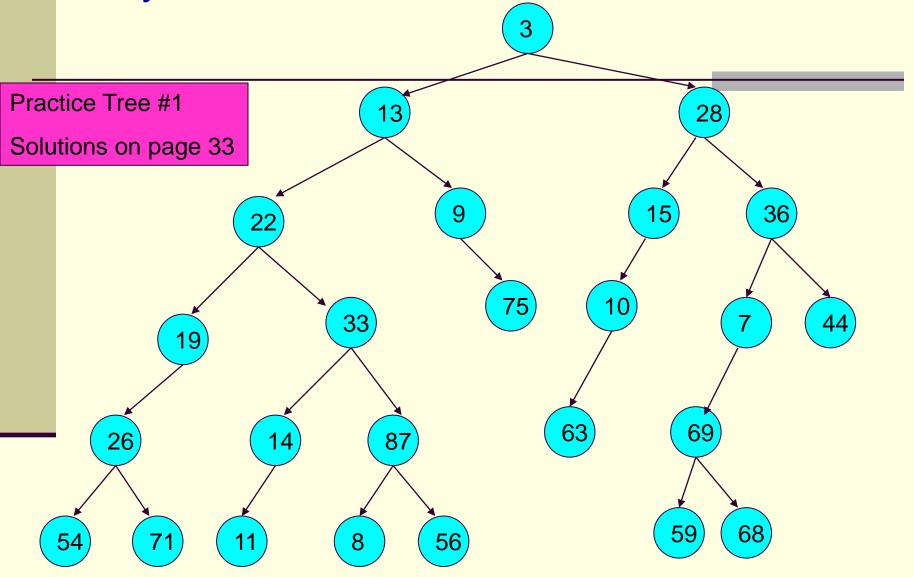


Binary Trees

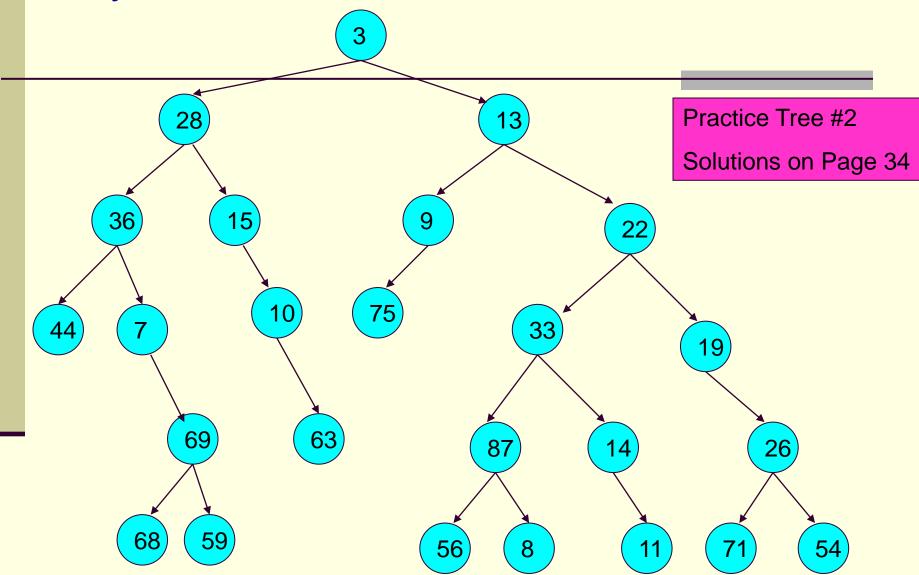


COP 3502 – Computer Science I

Binary Tree Traversals – Practice Problems



Binary Tree Traversals – Practice Problems



Practice Problem Solutions – Tree #1

Preorder Traversal:

3, 13, 22, 19, 26, 54, 71, 33, 14, 11, 87, 8, 56, 9, 75, 28, 15, 10, 63, 36, 7, 69, 59, 68, 44

Inorder Traversal:

54, 26, 71, 19, 22, 11, 14, 33, 8, 87, 56, 13, 9, 75, 3, 63, 10, 15, 28, 59, 69, 68, 7, 36, 44

Postorder Traversal:

54, 71, 26, 19, 11, 14, 8, 56, 87, 33, 22, 75, 9, 13, 63, 10, 15, 59, 68, 69, 7, 44, 36, 28, 3

Practice Problem Solutions – Tree #2

Preorder Traversal:

3, 28, 36, 44, 7, 69, 68, 59, 15, 10, 63, 13, 9, 75, 22, 33, 87, 56, 8, 14, 11, 19, 26, 71, 54

Inorder Traversal:

44, 36, 7, 68, 69, 59, 28, 15, 10, 63, 3, 75, 9, 13, 56, 87, 8, 33, 14, 11, 22, 19, 71, 26, 54

Postorder Traversal:

44, 68, 59, 69, 7, 36, 63, 10, 15, 28, 75, 9, 56, 8, 87, 11, 14, 33, 71, 54, 26, 19, 22, 13, 3