
Computer Science Department
University of Central Florida

Stacks:
Implementation in C

COP 3502 – Computer Science I

Stacks: Implementation in C page 2 © Jonathan Cazalas

Stacks – An Overview

 Stacks:
 Stacks are an Abstract Data Type

 They are NOT built into C

 We must define them and their behaviors
 So what is a stack?

 A data structure that stores information in the form of a
stack.

 Consists of a variable number of homogeneous elements
 i.e. elements of the same type

Stacks: Implementation in C page 3 © Jonathan Cazalas

Stacks – An Overview

 Stacks:
 Access Policy:

 The access policy for a stack is simple: the first element
to be removed from the stack is the last element that was
placed onto the stack
 The main idea is that the last item placed on to the stack is the

first item removed from the stack
 Known as the “Last in, First out” access policy

 LIFO for short
 The classical example of a stack is cafeteria trays.

 New, clean trays are added to the top of the stack.
 and trays are also taken from the top
 So the last tray in is the first tray taken out

Stacks: Implementation in C page 4 © Jonathan Cazalas

Stacks – An Overview

 Stacks:
 Basic Operations:

 PUSH:
 This PUSHes an item on top of the stack

 POP:
 This POPs off the top item in the stack and returns it

 Other important tidbit:
 The end of the stack,

 where PUSHes and POPs occur,
 is usually referred to as the TOP of the stack

Stacks: Implementation in C page 5 © Jonathan Cazalas

Stacks – An Overview

 Stacks:
 Basic Operations:

 PUSH:
 This PUSHes an item on top of the stack

 POP:
 This POPs off the top item in the stack and returns it

 Other important tidbit:
 The end of the stack,

 where PUSHes and POPs occur,
 is usually referred to as the TOP of the stack

Stacks: Implementation in C page 6 © Jonathan Cazalas

Stacks – An Overview

 Stacks:
 Other useful operations:

 empty:
 Typically implemented as a boolean function
 Returns TRUE if no items are in the stacck

 full:
 Returns TRUE if no more items can be added to the stack
 In theory, a stack should NEVER become full
 Actual implementations do have limits on the number of

elements a stack can store
 top:

 Simply returns the value at the top of the stack without actually
popping the stack.

Stacks: Implementation in C page 7 © Jonathan Cazalas

Stacks: Implementation in C

 Implementation of Stacks in C:
 As discussed on the previous lecture, there are

two obvious was to implement stacks:
1) Using arrays
2) Using linked lists

 We will go over both…

Stacks: Implementation in C page 8 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 What components will we need to store?
1) The array storing the elements

 The actual stack

 What else?
2) An index to the top of the stack

 We assume the bottom of the stack is index 0
 Meaning, the 1st element will be stored in index 0

 and we move up from there

Stacks: Implementation in C page 9 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 Here is the struct (skeleton) for our stack:

 SIZE clearly represents the max number of items
in the stack

 If the stack becomes full, at that point, the top item
will be stored at index ‘SIZE-1’

struct stack {
 int items[SIZE];
 int top;
};

Stacks: Implementation in C page 10 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 Here are the functions we will need to control our

stack behavior:
 void initialize(struct stack* stackPtr);

 int empty(struct stack* stackPtr);

 int full(struct stack* stackPtr);

 int push(struct stack* stackPtr, int value);

 int pop(struct stack* stackPtr);

 int top(struct stack* stackPtr);

Stacks: Implementation in C page 11 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 initialize:

 The initialize function has one line of code
 It sets the “top” equal to -1
 Remember, the first element will be at index 0
 So if the top is set to -1
 You know that the stack is empty

 Here’s the code:
void initialize(struct stack* stackPtr) {
 stackPtr->top = -1;
}

Stacks: Implementation in C page 12 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 empty:

 The empty function simply checks if the stack has no
elements

 Based on what you know thus far, how would you
determine if the stack is empty?

 If the top currently equals -1

 Here’s the code:
int empty(struct stack* stackPtr) {
 return (stackPtr->top == -1);
}

Stacks: Implementation in C page 13 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 full:

 The full function checks to see if the stack is full
 How would we do this?
 Remember, SIZE is the max # of elements in the stack

 Item 1 goes at index 0
 If the stack is full, the top item will be at index ‘SIZE-1’

 Here’s the code:
int full(struct stack* stackPtr) {
 return (stackPtr->top == SIZE - 1);
}

Stacks: Implementation in C page 14 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 push:

 Remember, we can only push if the stack is not full
 Meaning, if there is room to push

 So if the stack is full
 We return 0 showing the push could not be done

 If there is room
 we simply copy the value into the next location for the top of

the stack
 Then we adjust the top accordingly
 Finally, we return 1 showing the push was successful

Stacks: Implementation in C page 15 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 push:

 To push an element, we simply copy the value into the
next location for the top of the stack

 Then we adjust the top accordingly

 Here’s the code:
int push(struct stack* stackPtr, int value) {
 if (full(stackPtr))
 return 0;
 stackPtr->items[stackPtr->top+1] = value;
 (stackPtr->top)++;
 return 1;
}

Stacks: Implementation in C page 16 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 pop:

 Remember, we can only pop if the stack is not empty
 Meaning, there is at least one element to pop

 So if the stack is empty
 We return -1 showing that we cannot pop (stack empty)

 If the stack has at least one element:
 We save the value at the top of the stack into a temporary

variable
 We change the value for top

 Meaning if top was 20 before the pop, it will now be 19
 Meaning it will now reference index 19

 Finally, we return the temporary variable (the popped off top)

Stacks: Implementation in C page 17 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 pop:

 To pop an element, we simply copy the top into a
temporary variable, adjust the top accordingly, and return
the temporary variable.

 Here’s the code:
int pop(struct stack* stackPtr) {
 int retval;
 if (empty(stackPtr))
 return -1;
 retval = stackPtr->items[stackPtr->top];
 (stackPtr->top)--;
 return retval;
}

Stacks: Implementation in C page 18 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 top:

 The top function is very similar to pop
 Remember, we can only check for the top of the stack if

the stack is not empty
 Meaning, there is at least one element in the stack

 So if the stack is empty
 We return -1 showing that there is no top to check for

 If the stack has at least one element:
 We simply return the topmost element

Stacks: Implementation in C page 19 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 top:

 Simply returns the top item in the stack

 Here’s the code:
int top(struct stack* stackPtr) {
 if (empty(stackPtr))
 return -1;
 return stackPtr->items[stackPtr->top];
}

Stacks: Implementation in C page 20 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 Here the link to this code on the site:
 http://www.cs.ucf.edu/courses/cop3502/spr201
2/programs/stacksqueues/stack.c

http://www.cs.ucf.edu/courses/cop3502/spr2012/programs/stacksqueues/stack.c�
http://www.cs.ucf.edu/courses/cop3502/spr2012/programs/stacksqueues/stack.c�

Stacks: Implementation in C page 21 © Jonathan Cazalas

Brief Interlude: Human Stupidity

Stacks: Implementation in C page 22 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks:
 We essentially use a standard linked list
 But we limit the functionality of a linked list

 Thus creating the behavior required of a stack
 A push is simply designated as inserting into the

front of the linked list
 A pop would be deleting the front node

 So we basically create just one struct for the stack

 It acts similar to the struct defined for use with linked lists

Stacks: Implementation in C page 23 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks:
 So each node will be an element of the stack
 Each node has a data value
 Each node also has a next
 We simply push (insert at front)
 And pop (delete the front node)

Stacks: Implementation in C page 24 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks:
 Here’s the struct for the stack (for each node)

 Notice that we do not have a ‘top’
 Why?

 The top will ALWAYS be the first node
 And we don’t need to worry about the size getting too

large since this is a linked list (in heap memory)

struct stack {
 int data;
 struct stack *next;
};

Stacks: Implementation in C page 25 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks:
 Here are the functions we will need to control our

stack behavior:
 void init(struct stack **front);

 int empty(struct stack *front);

 int push(struct stack **front, int num);

 struct stack* pop(struct stack **front);

 int top(struct stack *front);

Stacks: Implementation in C page 26 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks:
 initialize:

 The initialize function has one line of code
 It simply sets the pointer of the list to NULL

 Specifying that the list is empty at this point

 Here’s the code:

void init(struct stack **front) {
 *front = NULL;
}

Stacks: Implementation in C page 27 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks:
 empty:

 The lists is empty when the main list pointer is NULL
 So if front equals NULL

 Return 1 showing the list is empty
 Else, return 0 showing that the list is not empty

 Here’s the code:
int empty(struct stack *front) {
 if (front == NULL)
 return 1;
 else
 return 0;
}

Stacks: Implementation in C page 28 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks :
 push:

 Remember, push means that we add a new node at the
front of the list

 So we need to allocate this node
 We need to save the data value into this node
 We then need to update pointers accordingly

 The new node will now be the FIRST node
 So the address of the current front node needs to be saved

into the next of this new node
 Allowing the new node to point to the previous first node

 The pointer to the front of the list needs to get updated
 Finally, we return 1 to show a successful push

Stacks: Implementation in C page 29 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks :
 push:
 Here’s the code:

int push(struct stack **front, int num) {
 struct stack *temp;
 temp = (struct stack *)malloc(sizeof(struct stack));
 if (temp != NULL) {
 temp->data = num;
 temp->next = *front;
 *front = temp;
 return 1;
 }
 else
 return 0;
}

Stacks: Implementation in C page 30 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks :
 pop:

 Assuming that there is at least one node to pop
 We make a temp pointer to point to the front node

 The node we will pop
 We then update our pointers accordingly

 The 2nd node now becomes the first node
 Finally, we return the address of the temp pointer

Stacks: Implementation in C page 31 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks :
 pop:
 Here’s the code:

struct stack* pop(struct stack **front) {
 struct stack *temp;
 temp = NULL;

 if (*front != NULL) {
 temp = (*front);
 *front = (*front)->next;
 temp -> next = NULL;
 }
 return temp;
}

Stacks: Implementation in C page 32 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks :
 top:

 Assuming that there is at least one node
 We simply return the data value of that node

 Otherwise,

 If there is no nodes
 We return -1 showing that the list is empty

Stacks: Implementation in C page 33 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks :
 top:
 Here’s the code:

int top(struct stack *front) {
 if (front != NULL) {
 return front->data;
 }
 else
 return -1;
}

Stacks: Implementation in C page 34 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks:
 Here the link to this code on the site:
 http://www.cs.ucf.edu/courses/cop3502/spr201
2/programs/stacksqueues/stackll.c

http://www.cs.ucf.edu/courses/cop3502/spr2012/programs/stacksqueues/stackll.c�
http://www.cs.ucf.edu/courses/cop3502/spr2012/programs/stacksqueues/stackll.c�

Stacks: Implementation in C page 35 © Jonathan Cazalas

Stack Application(s)

WASN’T
THAT

SPLENDID!

Stacks: Implementation in C page 36 © Jonathan Cazalas

Daily Demotivator

Computer Science Department
University of Central Florida

Stacks:
Implementation in C

COP 3502 – Computer Science I

	Stacks: Implementation in C
	Stacks – An Overview
	Stacks – An Overview
	Stacks – An Overview
	Stacks – An Overview
	Stacks – An Overview
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Brief Interlude: Human Stupidity
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stack Application(s)
	Daily Demotivator
	Stacks: Implementation in C

