
Computer Science Department
University of Central Florida

Stacks:
Implementation in C

COP 3502 – Computer Science I

Stacks: Implementation in C page 2 © Jonathan Cazalas

Stacks – An Overview

 Stacks:
 Stacks are an Abstract Data Type

 They are NOT built into C

 We must define them and their behaviors
 So what is a stack?

 A data structure that stores information in the form of a
stack.

 Consists of a variable number of homogeneous elements
 i.e. elements of the same type

Stacks: Implementation in C page 3 © Jonathan Cazalas

Stacks – An Overview

 Stacks:
 Access Policy:

 The access policy for a stack is simple: the first element
to be removed from the stack is the last element that was
placed onto the stack
 The main idea is that the last item placed on to the stack is the

first item removed from the stack
 Known as the “Last in, First out” access policy

 LIFO for short
 The classical example of a stack is cafeteria trays.

 New, clean trays are added to the top of the stack.
 and trays are also taken from the top
 So the last tray in is the first tray taken out

Stacks: Implementation in C page 4 © Jonathan Cazalas

Stacks – An Overview

 Stacks:
 Basic Operations:

 PUSH:
 This PUSHes an item on top of the stack

 POP:
 This POPs off the top item in the stack and returns it

 Other important tidbit:
 The end of the stack,

 where PUSHes and POPs occur,
 is usually referred to as the TOP of the stack

Stacks: Implementation in C page 5 © Jonathan Cazalas

Stacks – An Overview

 Stacks:
 Basic Operations:

 PUSH:
 This PUSHes an item on top of the stack

 POP:
 This POPs off the top item in the stack and returns it

 Other important tidbit:
 The end of the stack,

 where PUSHes and POPs occur,
 is usually referred to as the TOP of the stack

Stacks: Implementation in C page 6 © Jonathan Cazalas

Stacks – An Overview

 Stacks:
 Other useful operations:

 empty:
 Typically implemented as a boolean function
 Returns TRUE if no items are in the stacck

 full:
 Returns TRUE if no more items can be added to the stack
 In theory, a stack should NEVER become full
 Actual implementations do have limits on the number of

elements a stack can store
 top:

 Simply returns the value at the top of the stack without actually
popping the stack.

Stacks: Implementation in C page 7 © Jonathan Cazalas

Stacks: Implementation in C

 Implementation of Stacks in C:
 As discussed on the previous lecture, there are

two obvious was to implement stacks:
1) Using arrays
2) Using linked lists

 We will go over both…

Stacks: Implementation in C page 8 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 What components will we need to store?
1) The array storing the elements

 The actual stack

 What else?
2) An index to the top of the stack

 We assume the bottom of the stack is index 0
 Meaning, the 1st element will be stored in index 0

 and we move up from there

Stacks: Implementation in C page 9 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 Here is the struct (skeleton) for our stack:

 SIZE clearly represents the max number of items
in the stack

 If the stack becomes full, at that point, the top item
will be stored at index ‘SIZE-1’

struct stack {
 int items[SIZE];
 int top;
};

Stacks: Implementation in C page 10 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 Here are the functions we will need to control our

stack behavior:
 void initialize(struct stack* stackPtr);

 int empty(struct stack* stackPtr);

 int full(struct stack* stackPtr);

 int push(struct stack* stackPtr, int value);

 int pop(struct stack* stackPtr);

 int top(struct stack* stackPtr);

Stacks: Implementation in C page 11 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 initialize:

 The initialize function has one line of code
 It sets the “top” equal to -1
 Remember, the first element will be at index 0
 So if the top is set to -1
 You know that the stack is empty

 Here’s the code:
void initialize(struct stack* stackPtr) {
 stackPtr->top = -1;
}

Stacks: Implementation in C page 12 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 empty:

 The empty function simply checks if the stack has no
elements

 Based on what you know thus far, how would you
determine if the stack is empty?

 If the top currently equals -1

 Here’s the code:
int empty(struct stack* stackPtr) {
 return (stackPtr->top == -1);
}

Stacks: Implementation in C page 13 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 full:

 The full function checks to see if the stack is full
 How would we do this?
 Remember, SIZE is the max # of elements in the stack

 Item 1 goes at index 0
 If the stack is full, the top item will be at index ‘SIZE-1’

 Here’s the code:
int full(struct stack* stackPtr) {
 return (stackPtr->top == SIZE - 1);
}

Stacks: Implementation in C page 14 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 push:

 Remember, we can only push if the stack is not full
 Meaning, if there is room to push

 So if the stack is full
 We return 0 showing the push could not be done

 If there is room
 we simply copy the value into the next location for the top of

the stack
 Then we adjust the top accordingly
 Finally, we return 1 showing the push was successful

Stacks: Implementation in C page 15 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 push:

 To push an element, we simply copy the value into the
next location for the top of the stack

 Then we adjust the top accordingly

 Here’s the code:
int push(struct stack* stackPtr, int value) {
 if (full(stackPtr))
 return 0;
 stackPtr->items[stackPtr->top+1] = value;
 (stackPtr->top)++;
 return 1;
}

Stacks: Implementation in C page 16 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 pop:

 Remember, we can only pop if the stack is not empty
 Meaning, there is at least one element to pop

 So if the stack is empty
 We return -1 showing that we cannot pop (stack empty)

 If the stack has at least one element:
 We save the value at the top of the stack into a temporary

variable
 We change the value for top

 Meaning if top was 20 before the pop, it will now be 19
 Meaning it will now reference index 19

 Finally, we return the temporary variable (the popped off top)

Stacks: Implementation in C page 17 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 pop:

 To pop an element, we simply copy the top into a
temporary variable, adjust the top accordingly, and return
the temporary variable.

 Here’s the code:
int pop(struct stack* stackPtr) {
 int retval;
 if (empty(stackPtr))
 return -1;
 retval = stackPtr->items[stackPtr->top];
 (stackPtr->top)--;
 return retval;
}

Stacks: Implementation in C page 18 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 top:

 The top function is very similar to pop
 Remember, we can only check for the top of the stack if

the stack is not empty
 Meaning, there is at least one element in the stack

 So if the stack is empty
 We return -1 showing that there is no top to check for

 If the stack has at least one element:
 We simply return the topmost element

Stacks: Implementation in C page 19 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 top:

 Simply returns the top item in the stack

 Here’s the code:
int top(struct stack* stackPtr) {
 if (empty(stackPtr))
 return -1;
 return stackPtr->items[stackPtr->top];
}

Stacks: Implementation in C page 20 © Jonathan Cazalas

Stacks: Implementation in C

 Array Implementation of Stacks:
 Here the link to this code on the site:
 http://www.cs.ucf.edu/courses/cop3502/spr201
2/programs/stacksqueues/stack.c

http://www.cs.ucf.edu/courses/cop3502/spr2012/programs/stacksqueues/stack.c�
http://www.cs.ucf.edu/courses/cop3502/spr2012/programs/stacksqueues/stack.c�

Stacks: Implementation in C page 21 © Jonathan Cazalas

Brief Interlude: Human Stupidity

Stacks: Implementation in C page 22 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks:
 We essentially use a standard linked list
 But we limit the functionality of a linked list

 Thus creating the behavior required of a stack
 A push is simply designated as inserting into the

front of the linked list
 A pop would be deleting the front node

 So we basically create just one struct for the stack

 It acts similar to the struct defined for use with linked lists

Stacks: Implementation in C page 23 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks:
 So each node will be an element of the stack
 Each node has a data value
 Each node also has a next
 We simply push (insert at front)
 And pop (delete the front node)

Stacks: Implementation in C page 24 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks:
 Here’s the struct for the stack (for each node)

 Notice that we do not have a ‘top’
 Why?

 The top will ALWAYS be the first node
 And we don’t need to worry about the size getting too

large since this is a linked list (in heap memory)

struct stack {
 int data;
 struct stack *next;
};

Stacks: Implementation in C page 25 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks:
 Here are the functions we will need to control our

stack behavior:
 void init(struct stack **front);

 int empty(struct stack *front);

 int push(struct stack **front, int num);

 struct stack* pop(struct stack **front);

 int top(struct stack *front);

Stacks: Implementation in C page 26 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks:
 initialize:

 The initialize function has one line of code
 It simply sets the pointer of the list to NULL

 Specifying that the list is empty at this point

 Here’s the code:

void init(struct stack **front) {
 *front = NULL;
}

Stacks: Implementation in C page 27 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks:
 empty:

 The lists is empty when the main list pointer is NULL
 So if front equals NULL

 Return 1 showing the list is empty
 Else, return 0 showing that the list is not empty

 Here’s the code:
int empty(struct stack *front) {
 if (front == NULL)
 return 1;
 else
 return 0;
}

Stacks: Implementation in C page 28 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks :
 push:

 Remember, push means that we add a new node at the
front of the list

 So we need to allocate this node
 We need to save the data value into this node
 We then need to update pointers accordingly

 The new node will now be the FIRST node
 So the address of the current front node needs to be saved

into the next of this new node
 Allowing the new node to point to the previous first node

 The pointer to the front of the list needs to get updated
 Finally, we return 1 to show a successful push

Stacks: Implementation in C page 29 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks :
 push:
 Here’s the code:

int push(struct stack **front, int num) {
 struct stack *temp;
 temp = (struct stack *)malloc(sizeof(struct stack));
 if (temp != NULL) {
 temp->data = num;
 temp->next = *front;
 *front = temp;
 return 1;
 }
 else
 return 0;
}

Stacks: Implementation in C page 30 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks :
 pop:

 Assuming that there is at least one node to pop
 We make a temp pointer to point to the front node

 The node we will pop
 We then update our pointers accordingly

 The 2nd node now becomes the first node
 Finally, we return the address of the temp pointer

Stacks: Implementation in C page 31 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks :
 pop:
 Here’s the code:

struct stack* pop(struct stack **front) {
 struct stack *temp;
 temp = NULL;

 if (*front != NULL) {
 temp = (*front);
 *front = (*front)->next;
 temp -> next = NULL;
 }
 return temp;
}

Stacks: Implementation in C page 32 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks :
 top:

 Assuming that there is at least one node
 We simply return the data value of that node

 Otherwise,

 If there is no nodes
 We return -1 showing that the list is empty

Stacks: Implementation in C page 33 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks :
 top:
 Here’s the code:

int top(struct stack *front) {
 if (front != NULL) {
 return front->data;
 }
 else
 return -1;
}

Stacks: Implementation in C page 34 © Jonathan Cazalas

Stacks: Implementation in C

 Linked Lists Implementation of Stacks:
 Here the link to this code on the site:
 http://www.cs.ucf.edu/courses/cop3502/spr201
2/programs/stacksqueues/stackll.c

http://www.cs.ucf.edu/courses/cop3502/spr2012/programs/stacksqueues/stackll.c�
http://www.cs.ucf.edu/courses/cop3502/spr2012/programs/stacksqueues/stackll.c�

Stacks: Implementation in C page 35 © Jonathan Cazalas

Stack Application(s)

WASN’T
THAT

SPLENDID!

Stacks: Implementation in C page 36 © Jonathan Cazalas

Daily Demotivator

Computer Science Department
University of Central Florida

Stacks:
Implementation in C

COP 3502 – Computer Science I

	Stacks: Implementation in C
	Stacks – An Overview
	Stacks – An Overview
	Stacks – An Overview
	Stacks – An Overview
	Stacks – An Overview
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Brief Interlude: Human Stupidity
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stacks: Implementation in C
	Stack Application(s)
	Daily Demotivator
	Stacks: Implementation in C

