And More Algorithm Analysis

Computer Science Department University of Central Florida

COP 3502 – Computer Science I

G

And More Algorithm Analysis

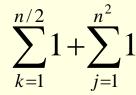
- Examples of Analyzing Code:
 - Last time we went over examples of analyzing code
 - We did this in a somewhat naïve manner
 - Just analyzed the code and tried to "trace" what was going on
 - This Lecture:
 - We will do this in a more structured fashion
 - We mentioned that summations are a tool for you to help coming up with a running time of iterative algorithms
 - Today we will look at some of those same code fragments, as well as others, and show you how to use summations to find the Big-O running time

Example 1:

- Determine the Big O running time of the following code fragment:
 - We have two for loops
 - They are NOT nested
 - The first runs from k = 1 up to (and including) n/2
 - The second runs from j = 1 up to (and including) n²

Example 1:

- Determine the Big O running time of the following code fragment:
 - Here's how we can express the number of operations in the form of a summation:



The constant value, 1, inside each summation refers to the one, and only, operation in each for loop.

Now you simply solve the summation!

Example 1:

- Determine the Big O running time of the following code fragment:
 - Here's how we can express the number of operations in the form of a summation:

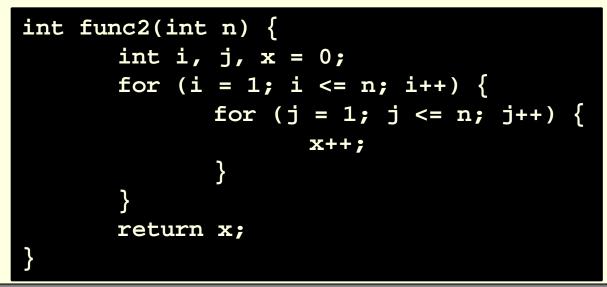
$$\sum_{k=1}^{n/2} 1 + \sum_{j=1}^{n^2} 1$$
You use the formula:
$$\sum_{i=1}^{n} k = k * n$$

$$\sum_{k=1}^{n/2} 1 + \sum_{j=1}^{n^2} 1 = \frac{n}{2} + n^2$$

This is a <u>CLOSED FORM</u> solution of the summation
 So we approximate the running time as O(n²)

Example 2:

- Determine the Big O running time of the following code fragment:
 - Here we again have two for loops
 - But this time they are nested



Example 2:

- Determine the Big O running time of the following code fragment:
 - Here we again have two for loops
 - But this time they are nested
 - The outer loop runs from i = 1 up to (and including) n
 - The inner loop runs from j = 1 up to (and including) n
 - The sole (only) operation is a "x++" within the inner loop

Example 2:

- Determine the Big O running time of the following code fragment:
 - We express the number of operations in the form of a summation and then we solve that summation:

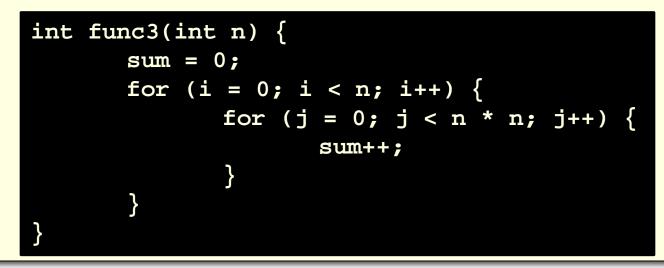
$$\sum_{i=1}^{n} \sum_{j=1}^{n} 1$$
You use the formula:
$$\sum_{i=1}^{n} k = k * n$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} 1 = \sum_{i=1}^{n} n = n^{2}$$
All we did is apply the above formula twice.

- This is a <u>CLOSED FORM</u> solution of the summation
- So we approximate the running time as O(n²)

Example 3:

- Determine the Big O running time of the following code fragment:
 - Here we again have two for loops
 - And they are nested. So is this O(n²)?



Example 3:

- Determine the Big O running time of the following code fragment:
 - Here we again have two for loops
 - And they are nested. So is this O(n²)?
 - The outer loop runs from i = 0 up to (and not including) n
 - The inner loop runs from j = 0 up to (and not including) n^2
 - The sole (only) operation is a "sum++" within the inner loop

Example 3:

- Determine the Big O running time of the following code fragment:
 - We express the number of operations in the form of a summation and then we solve that summation:

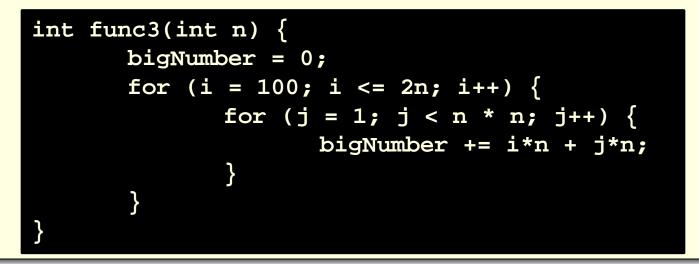
$$\sum_{i=0}^{n-1} \sum_{j=0}^{n^2-1} 1$$
You use the formula:
$$\sum_{i=1}^{n} k = k * n$$

$$\sum_{i=0}^{n-1} \sum_{j=0}^{n^2-1} 1 = \sum_{i=0}^{n-1} n^2 = n^2 \sum_{i=0}^{n-1} 1 = n^3$$
All we did is apply the above formula twice.

- This is a <u>CLOSED FORM</u> solution of the summation
- So we approximate the running time as O(n³)

Example 4:

- Write a summation that describes the <u>number of</u> <u>multiplication operations</u> in this code fragment:
 - Here we again have two for loops
 - Pay attention to the limits (bounds) of the for loop



Example 4:

- Write a summation that describes the <u>number of</u> <u>multiplication operations</u> in this code fragment:
 - Here we again have two for loops
 - Pay attention to the limits (bounds) of the for loop
 - The outer loop runs from i = 100 up to (and including) 2n
 - The inner loop runs from j = 1 up to (and not including) n^2
 - Now examine the number of <u>multiplications</u>
 - Because this problem specifically said to "describe the number of multiplication operations, we do not care about ANY of the other operations
 - bigNumber += i*n + j*n;
 - There are TWO multiplication operations in this statement

Example 4:

- Write a summation that describes the <u>number of</u> <u>multiplication operations</u> in this code fragment:
 - We express the number of multiplications in the form of a summation and then we solve that summation:

$$\sum_{i=100}^{2n} \sum_{j=1}^{n^2 - 1} 2^{j}$$

$$\sum_{i=100}^{2n} \sum_{j=1}^{n^2-1} 2 = \sum_{i=100}^{2n} 2(n^2-1) = 2(n^2-1) \sum_{i=100}^{2n} 1 = 2(n^2-1)(2n-99)$$

- This is a <u>CLOSED FORM</u> solution of the summation
- Shows the number of multiplications

WASN'T THAT THE COOLEST!

© Jonathan Cazalas

And More Algorithm Analysis

page 15

Daily Demotivator

CURIOSITY

SOME PLACES REMAIN UNKNOWN BECAUSE NO ONE HAS VENTURED FORTH. OTHERS REMAIN SO BECAUSE NO ONE HAS EVER COME BACK.

© Jonathan Cazalas

And More Algorithm Analysis

page 16

And More Algorithm Analysis

Computer Science Department University of Central Florida

COP 3502 – Computer Science I