

Computer Science Department University of Central Florida

COP 3502 – Computer Science I

Announcement

Quiz 2 is TODAY

- You have till 11:55 PM to hit "submit"
- Study before the quiz and it should be easy

Summation Homework:

- A short summation homework is assigned
- It is due Wednesday (in-class)
- Monday's lecture will be on solving summations
 - For those of you who want to begin working on the HW before Monday's lecture, it has already been uploaded to the course website

Big-O Notation

What is Big O?

- Big O comes from Big-O Notation
 - In C.S., we want to know how efficient an algorithm is...how "fast" it is
 - More specifically...we want to know <u>how the</u> <u>performance of an algorithm responds to changes</u> <u>in problem size</u>
 - The goal is to provide a *qualitative* insight on the # of operations for a problem size of *n* elements.
 - And this total # of operations can be described with a mathematical expression in terms of n.
 - This expression is known as Big-O

- Examples of Analyzing Code:
 - We now go over many examples of code fragments
 - Each of these functions will be analyzed for their runtime in terms of the variable n
 - Utilizing the idea of Big-O,
 - determine the Big-O running time of each

- Example 1:
 - Determine the Big O running time of the following code fragment:

```
for (k = 1; k <= n/2; k++) {
    sum = sum + 5;
}
for (j = 1; j <= n*n; j++) {
    delta = delta + 1;
}</pre>
```

More Algorithm Analysis

Example 1:

- So look at what's going on in the code:
 - We care about the total number of REPETITIVE operations.
 - Remember, we said we care about the running time for LARGE values of n
 - So in a for loop with n as part of the comparison value determining when to stop for (k=1; k<=<u>n</u>/2; k++)
 - Whatever is INSIDE that loop will be executed a LOT of times
 - So we examine the code within this loop and see how many operations we find
 - When we say operations, we're referring to mathematical operations such as +, -, *, /, etc.

Example 1:

- So look at what's going on in the code:
 - The number of operations executed by these loops is the sum of the individual loop operations.
 - We have 2 loops,
 - The first loop runs n/2 times
 - Each iteration of the <u>first loop</u> results in <u>one operation</u>
 - The + operation in: sum = sum + 5;
 - So there are n/2 operations in the first loop
 - The second loop runs n² times
 - Each iteration of the <u>second loop</u> results in <u>one operation</u>
 - The + operation in: delta = delta + 1;
 - So there are n² operations in the second loop.

Example 1:

- So look at what's going on in the code:
 - The number of operations executed by these loops is the sum of the individual loop operations.
 - The first loop has n/2 operations
 - The second loop has n² operations
 - They are NOT nested loops.
 - One loop executes AFTER the other completely finishes
 - So we simply ADD their operations
 - The total number of operations would be n/2 + n²
 - In Big-O terms, we can express the number of operations as O(n²)

- Example 2:
 - Determine the Big O running time of the following code fragment:

Example 2:

- So look at what's going on in the code:
 - We care about the total number of REPETITIVE operations
 - We have two loops
 - AND they are NESTED loops
 - The outer loop runs n times
 - From i = 1 up through n
 - How many operations are performed at each iteration?
 - Answer is coming…
 - The inner loop runs n times
 - From j = 1 up through n
 - And only one operation (x++) is performed at each iteration

More Algorithm Analysis

Example 2:

- So look at what's going on in the code:
 - Let's look at a couple of iterations of the OUTER loop:
 - When i = 1, what happens?
 - The inner loop runs n times
 - Resulting in n operations from the inner loop
 - Then, i gets incremented and it becomes equal to 2
 - When i = 2, what happens?
 - Again, the inner loop runs n times
 - Again resulting in n operations from the inner loop
 - We notice the following:
 - For EACH iteration of the OUTER loop,
 - The INNER loop runs n times
 - Resulting in n operations

Example 2:

- So look at what's going on in the code:
 - And how many times does the outer loop run?
 - n times
 - So the outer loop runs n times
 - And for each of those n times, the inner loop also runs n times
 - Resulting in n operations
 - So we have n operations per iteration of OUTER loop
 - And outer loop runs n times
 - Finally, we have n*n as the number of operations
 - We approximate the running time as O(n²)

- Example 3:
 - Determine the Big O running time of the following code fragment:

Example 3:

- So look at what's going on in the code:
 - We care about the total number of REPETITIVE operations
 - We have two loops
 - They are NOT nested loops
 - The first loop runs n times
 - From i = 1 up through n
 - only one operation (x++) is performed at each iteration
 - How many times does the second loop run?
 - Notice that i is indeed reset to 1 at the beginning of the loop
 - Thus, the second loop runs n times, from i = 1 up through n
 - And only one operation (x++) is performed at each iteration

Example 3:

- So look at what's going on in the code:
 - Again, the loops are NOT nested
 - So they execute sequentially (one after the other)

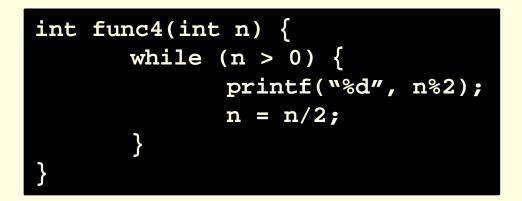
Therefore:

- Our total runtime is on the order of n+n
- Which of course equals 2n

Now, in Big O notation

We approximate the running time as O(n)

- Example 4:
 - Determine the Big O running time of the following code fragment:



- Example 4:
 - So look at what's going on in the code:
 - We have one while loop
 - You can't just look at this loop and say it iterates n times or n/2 times
 - Rather, it continues to execute as long as n is greater than 0
 - The question is: <u>how many iterations will that be?</u>
 - Within the while loop
 - The last line of code divides the input, n, by 2
 - So n is halved at each iteration of the while loop
 - If you remember, we said this ends up running in log n time
 - Now let's look at how this works

C	Jonathan	Cazalas	
~	oonathan	ouzaido	

More Algorithm Analysis

Example 4:

- So look at what's going on in the code:
 - For the ease of the analysis, we make a new variable
 - originalN:
 - originalN refers to the value originally stored in the input, n
 - So if n started at 100, originalN will be equal to 100
 - The first time through the loop
 - n gets set to originalN/2
 - If the original n was 100, after one iteration n would be 100/2
 - The second time through the loop
 - n gets set to originalN/4
 - The third time through the loop
 - n gets set to originalN/8

Notice:

After <u>three</u> iterations, n gets set to originalN/2³

19

More Algorithm Analysis

Example 4:

- So look at what's going on in the code:
 - In general, after k iterations
 - n gets set to originalN/2k
 - The algorithm ends when original $N/2^k = 1$, approximately
 - We now solve for k
 - Why?
 - Because we want to find the total # of iterations
 - Multiplying both sides by 2^k , we get original $N = 2^k$
 - Now, using the definition of logs, we solve for k
 - k = log originalN
 - So we approximate the running time as O(log n)

© Jonathan Cazalas	More Algorithm Analysis	page 1

Brief Interlude: Human Stupidity

- Example 5:
 - Determine the Big O running time of the following code fragment:

More Algorithm Analysis

- So look at what's going on in the code:
 - At first glance, we see two NESTED loops
 - This can often indicate an O(n²) algorithm
 - But we need to look closer to confirm
 - Focus on what's going on with i and j

More Algorithm Analysis

- So look at what's going on in the code:
 - Focus on what's going on with i and j
 - i and j clearly increase (from the j++ and i++)
 - BUT, they never decrease
 - AND, neither ever gets reset to 0

More Algorithm Analysis

- So look at what's going on in the code:
 - And the OUTER while loop ends once i gets to n
 - So, what does this mean?
 - The statement i++ can never run more than n times
 - And the statement j++ can never run more than n times

- So look at what's going on in the code:
 - The MOST number of times these two statements can run (combined) is 2n times
 - So we approximate the running time as O(n)

Example 6:

Determine the Big O running time of the following code fragment:

What's the one big difference here???

- Example 6:
 - So look at what's going on in the code:
 - The difference is that we RESET j to 0 a the beginning of the OUTER while loop

Example 6:

- So look at what's going on in the code:
 - The difference is that we RESET j to 0 a the beginning of the OUTER while loop
 - How does that change things?
 - Now j can iterate from 0 to n for EACH iteration of the OUTER while loop
 - For each value of i
 - This is similar to the 2nd example shown
 - So we approximate the running time as O(n²)

- Example 7:
 - Determine the Big O running time of the following code fragment:

Example 7:

- So look at what's going on in the code:
 - First notice that the runtime here is NOT in terms of n
 - It will be in terms of sizeA and sizeB
 - And this is also just like Example 2
 - The outer loop runs sizeA times
 - For EACH of those times,
 - The inner loop runs sizeB times
 - So this algorithm runs sizeA*sizeB times
 - We approximate the running time as O(sizeA*sizeB)

- Example 8:
 - Determine the Big O running time of the following code fragment:

Example 8:

- So look at what's going on in the code:
 - Note: we see that we are calling the function binSearch
 - As discussed previously, a single binary search runs in O(log n) time
 - where n represents the number of items within which you are searching
- Examining the for loop:
 - The for loop will execute sizeA times
 - For EACH iteration of this loop
 - a binary search will be run
 - We approximate the running time as O(sizeA*log(sizeB))

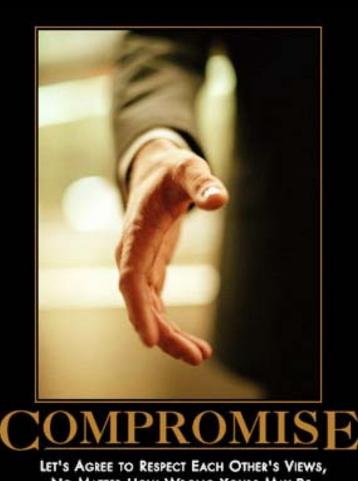
WASN'T THAT SWEET!

© Jonathan Cazalas

More Algorithm Analysis

page 33

Daily Demotivator



NO MATTER HOW WRONG YOURS MAY BE.

Computer Science Department University of Central Florida

COP 3502 – Computer Science I