Algorithm Analysis

Computer Science Department University of Central Florida

COP 3502 – Computer Science I

Order Analysis

- Judging the Efficiency/Speed of an Algorithm
 - Thus far, we've looked at a few different algorithms:
 - Max # of 1's
 - Linear Search vs Binary Search
 - Sorted List Matching Problem
 - and others
 - But we haven't really examined them, in detail, regarding their efficiency or speed
 - This is one of the main goals of this class!

Order Analysis

Judging the Efficiency/Speed of an Algorithm

We will use Order Notation to approximate two things about algorithms:

1) How much time they take

2) How much memory (space) they use

Note:

- It is nearly impossible to figure out the exact amount of time an algorithm will take
- Each algorithm gets translated into smaller and smaller machine instructions
- Each of these instructions take various amounts of time to execute on different computers

Order Analysis

Judging the Efficiency/Speed of an Algorithm

Note:

- Also, <u>we want to judge algorithms independent of their</u> <u>implementation</u>
- Thus, rather than figure out an algorithm's exact running time
 - We only want an approximation (Big-O approximation)
- Assumptions: we assume that each statement and each comparison in C takes some constant amount of time
- Also, most algorithms have some type of input
 - With sorting, for example, the size of the input (typically referred to as n) is the number of numbers to be sorted
 - Time and space used by an algorithm function of the input

Big-O Notation

What is Big O?

- Sounds like a rapper.?.
 - If it were only that simple!

Big O comes from Big-O Notation

- In C.S., we want to know how efficient an algorithm is...how "fast" it is
- More specifically...we want to know <u>how the</u> <u>performance of an algorithm responds to changes</u> <u>in problem size</u>

What is Big O?

- The goal is to provide a <u>qualitative insight</u> on the <u># of operations for a problem size of n elements</u>.
- And this total # of operations can be described with a mathematical expression in terms of n.
 - This expression is known as Big-O
- The <u>Big-O</u> notation is a <u>way of measuring the</u> order of magnitude of a mathematical <u>expression</u>.
- O(n) means "of the order of n"

Big-O Notation

Consider the expression:

$$f(n) = 4n^2 + 3n + 10$$

- How fast is this "growing"?
 - There are three terms:
 - the 4n², the 3n, and the 10
 - As n gets bigger, which term makes it get larger fastest?
 - Let's look at some values of n and see what happens?

4n ²	3n	10
4	3	10
<mark>4</mark> 00	30	<mark>1</mark> 0
40,000	300	10
4,000,000	3,000	<mark>1</mark> 0
400,000,000	30,000	10
40,000,000,000	300,000	10
4,000,000,000,000	3,000,000	10
	4 400 40,000 40,000,000 400,000,000 40,000,00	434003040,00030040,000,0003,000400,000,00030,00040,000,000,000300,000

Big-O Notation

Consider the expression:

- $f(n) = 4n^2 + 3n + 10$
- How fast is this "growing"?
 - Which term makes it get larger fastest?
 - As n gets larger and larger, the 4n² term DOMINATES the resulting answer
 - f(1,000,000) = 4,000,003,000,010
- The idea of behind Big-O is to <u>reduce the</u> <u>expression</u> so that it <u>captures the **qualitative**</u> <u>behavior</u> in the <u>simplest terms.</u>

Big-O Notation

- Consider the expression: $f(n) = 4n^2 + 3n + 10$
 - How fast is this "growing"?
 - Look at VERY large values of n
 - <u>eliminate</u> any term <u>whose contribution</u> to the total <u>ceases to be</u> <u>significant as n get larger and larger</u>
 - of course, this <u>also includes constants</u>, as they little to no effect with larger values of n
 - Including constant factors (coefficients)
 - So we ignore the constant 10
 - And we can also ignore the 3n
 - Finally, we can eliminate the constant factor, 4, in front of n²
 - We can approximate the order of this function, f(n), <u>as n²</u>
 - We can say, O(4n² + 3n + 10) = O(n²)
 - In conclusion, we say that f(n) takes O(n²) steps to execute

Some basic examples:

- What is the Big-O of the following functions:
 - f(n) = 4n² +3n +10
 - Answer: O(n²)
 - $f(n) = 76,756,234n^2 + 427,913n + 7$
 - Answer: O(n²)
 - $f(n) = 74n^8 62n^5 71562n^3 + 3n^2 5$

Answer: O(n⁸)

• $f(n) = 42n^{4*}(12n^6 - 73n^2 + 11)$

Answer: O(n¹⁰)

Answer: O(n*logn)

Big-O Notation

- Consider the expression: $f(n) = 4n^2 + 3n + 10$
 - How fast is this "growing"?
 - We can say, O(4n² + 3n + 10) = O(n²)
 - Till now, we have one function:
 - f(n) = 4n² + 3n + 10
 - Let us make a second function, g(n)
 - It's just a letter right? We could have called it r(n) or x(n)
 - Don't get scared about this
 - Now, <u>let g(n) equal n²</u>
 - g(n) = n²
 - So now we have two functions: f(n) and g(n)
 - We said (above) that $O(4n^2 + 3n + 10) = O(n^2)$
 - Similarly, we can say that the order of f(n) is O[g(n)].

Brace yourself!

Definition:

f(n) is O[g(n)] <u>if there exists</u> positive integers c and N, such that <u>f(n) <= c*g(n)</u> for all n>=N.

- Think about the two functions we just had:
 - f(n) = 4n² + 3n + 10, and g(n) = n²
 - We agreed that $O(4n^2 + 3n + 10) = O(n^2)$
 - Which means we agreed that the order of <u>f(n) is O(g(n)</u>
- That's all this definition says!!!
- f(n) is big-O of g(n), if there is a c,
 - (c is a constant)
- such that f(n) is not larger than c*g(n) for sufficiently large values of n (greater than N)

Big-O Notation

Definition:

f(n) is O[g(n)] <u>if there exists</u> positive integers c and N, such that <u>f(n) <= c*g(n)</u> for all n>=N.

Think about the two functions we just had:

f(n) = 4n² + 3n + 10, and g(n) = n²

- f is big-O of g, if there is a c such that f is not larger than c*g for sufficiently large values of n (greater than N)
 - So given the two functions above, <u>does there exist</u> some <u>constant</u>, <u>c</u>, that would make the following statement true?
 - f(n) <= c*g(n)</p>
 - 4n² + 3n + 10 <= c*n²
 - If there does exist this c, then f(n) is O(g(n))
- Let's go see if we can come up with the constant, c

Big-O Notation

Definition:

f(n) is O[g(n)] if there exists positive integers c and N, such that f(n) <= c*g(n) for all n>=N.

PROBLEM: Given our two functions,

- f(n) = 4n² + 3n + 10, and g(n) = n²
- Find the c such that 4n² + 3n + 10 <= c*n²
- Clearly, c cannot be 4 or less
 - Cause even if it was 4, we would have:
 - 4n² + 3n + 10 <= 4n²
 - This is <u>NEVER true for any positive value of n</u>!
 - So <u>c must be greater than 4</u>
- Let us try with c being equal to 5
 - 4n² + 3n + 10 <= 5n²

Big-O Notation

Definition:

f(n) is O[g(n)] <u>if there exists</u> positive integers c and N, such that <u>f(n) <= c*g(n)</u> for all n>=N.

PROBLEM: Given our two functions,

- f(n) = 4n² + 3n + 10, and g(n) = n²
- Find the c such that 4n² + 3n + 10 <= c*n²
 - 4n² + 3n + 10 <= 5n²
 - For what values of n, if ANY at all, is this true?

n	4n² + 3n + 10	5n²
1	4(1) + 3(1) + 10 = 17	5(1) = 5

Big-O Notation

Definition:

f(n) is O[g(n)] <u>if there exists</u> positive integers c and N, such that <u>f(n) <= c*g(n)</u> for all n>=N.

PROBLEM: Given our two functions,

f(n) = 4n² + 3n + 10, and g(n) = n²

- Find the c such that 4n² + 3n + 10 <= c*n²
 - 4n² + 3n + 10 <= 5n²
 - For what values of n, if ANY at all, is this true?

n	4n² + 3n + 10	5n ²
1	4(1) + 3(1) + 10 = 17	5(1) = 5
2	4(4) + 3(2) + 10 = 32	5(4) = 20

Big-O Notation

Definition:

f(n) is O[g(n)] if there exists positive integers c and N, such that <u>f(n) <= c*g(n)</u> for all n>=N.

PROBLEM: Given our two functions,

f(n) = 4n² + 3n + 10, and g(n) = n²

Find the c such that 4n² + 3n + 10 <= c*n²

■ 4n² + 3n + 10 <= 5n²

For what values of n, if ANY at all, is this true?

n	4n² + 3n + 10	5n ²
1	4(1) + 3(1) + 10 = 17	5(1) = 5
2	4(4) + 3(2) + 10 = 32	5(4) = 20
3	4(9) + 3(3) + 10 = 55	5(9) = 45

Big-O Notation

Definition:

f(n) is O[g(n)] <u>if there exists</u> positive integers c and N, such that <u>f(n) <= c*g(n)</u> for all n>=N.

PROBLEM: Given our two functions,

f(n) = 4n² + 3n + 10, and g(n) = n²

- Find the c such that 4n² + 3n + 10 <= c*n²
 - 4n² + 3n + 10 <= 5n²
 - For what values of n, if ANY at all, is this true?

But now let's try larger values of n.

n	4n² + 3n + 10	5n ²
1	4(1) + 3(1) + 10 = 17	5(1) = 5
2	4(4) + 3(2) + 10 = 32	5(4) = 20
3	4(9) + 3(3) + 10 = 55	5(9) = 45
4	4(16) + 3(4) + 10 = 86	5(16) = 80

For n = 1 through 4, this statement is NOT true

Algorithm Analysis

Big-O Notation

Definition:

f(n) is O[g(n)] <u>if there exists</u> positive integers c and N, such that <u>f(n) <= c*g(n)</u> for all n>=N.

PROBLEM: Given our two functions,

f(n) = 4n² + 3n + 10, and g(n) = n²

Find the c such that 4n² + 3n + 10 <= c*n²

■ 4n² + 3n + 10 <= 5n²

For what values of n, if ANY at all, is this true?

n	4n² + 3n + 10	5n ²
1	4(1) + 3(1) + 10 = 17	5(1) = 5
2	4(4) + 3(2) + 10 = 32	5(4) = 20
3	4(9) + 3(3) + 10 = 55	5(9) = 45
4	4(16) + 3(4) + 10 = 86	5(16) = 80
5	4(25) + 3(5) + 10 = 125	5(25) = 125

Big-O Notation

Definition:

f(n) is O[g(n)] if there exists positive integers c and N, such that <u>f(n) <= c*g(n)</u> for all n>=N.

PROBLEM: Given our two functions,

f(n) = 4n² + 3n + 10, and g(n) = n²

Find the c such that 4n² + 3n + 10 <= c*n²

■ 4n² + 3n + 10 <= 5n²

For what values of n, if ANY at all, is this true?

n	4n² + 3n + 10	5n ²
1	4(1) + 3(1) + 10 = 17	5(1) = 5
2	4(4) + 3(2) + 10 = 32	5(4) = 20
3	4(9) + 3(3) + 10 = 55	5(9) = 45
4	4(16) + 3(4) + 10 = 86	5(16) = 80
5	4(25) + 3(5) + 10 = 125	5(25) = 125
6	4(36) + 3(6) + 10 = 172	5(36) = 180

Algorithm Analysis

Big-O Notation

Definition:

f(n) is O[g(n)] if there exists positive integers c and N, such that f(n) <= c*g(n) for all n>=N.

PROBLEM: Given our two functions,

- f(n) = 4n² + 3n + 10, and g(n) = n²
- Find the c such that 4n² + 3n + 10 <= c*n²
 - 4n² + 3n + 10 <= 5n²
 - For what values of n, if ANY at all, is this true?
 - So when n = 5, the statement finally becomes true
 - And when n > 5, it remains true!
- So our constant, 5, works for all $n \ge 5$.

Big-O Notation

Definition:

f(n) is O[g(n)] <u>if there exists</u> positive integers c and N, such that <u>f(n) <= c*g(n)</u> for all n>=N.

PROBLEM: Given our two functions,

- f(n) = 4n² + 3n + 10, and g(n) = n²
- Find the c such that 4n² + 3n + 10 <= c*n²
- So our constant, 5, works for all n >= 5.
- Therefore, <u>f(n) is O(g(n))</u> per our definition!
- Why?
- Who actually got that
- Because there exists positive integers, c and N,
 - Just so happens in this case that c = 5 and N = 5
- such that f(n) <= c*g(n).</p>

Definition:

- f(n) is O[g(n)] <u>if there exists</u> positive integers c and N, such that <u>f(n) <= c*g(n)</u> for all n>=N.
 - What can we take from this?
 - That Big-O is hard as #\$%q@\$^&!!!
 - No, but seriously...
 - What we can gather is that:
 - c*g(n) is an <u>upper bound</u> on the value of f(n).
 - It represents the worst possible scenario of running time.
 - The number of operations is, at worst, proportional to g(n) for all <u>large values</u> of n.

- Summing up the basic properties for determining the order of a function:
 - If you've got multiple functions added together, the fastest growing one determines the order
 - 2) Multiplicative constants don't affect the order
 - If you've got multiple functions multiplied together, the overall order is their individual orders multiplied together

Some basic examples:

- What is the Big-O of the following functions:
 - f(n) = 4n² +3n +10
 - Answer: O(n²)
 - $f(n) = 76,756,234n^2 + 427,913n + 7$
 - Answer: O(n²)
 - $f(n) = 74n^8 62n^5 71562n^3 + 3n^2 5$

Answer: O(n⁸)

• $f(n) = 42n^{4*}(12n^6 - 73n^2 + 11)$

Answer: O(n¹⁰)

Answer: O(n*logn)

Quick Example of Analyzing Code:

- This is just to show you how we use Big-O
 we'll do more of these (a lot more) next time
- Use big-O notation to analyze the time complexity of the following fragment of C code:

Quick Example of Analyzing Code:

- So look at what's going on in the code:
 - We care about the total number of REPETITIVE operations.
 - Remember, we said we care about the running time for LARGE values of n
 - So in a <u>for loop</u>, with n as part of the comparison value determining when to stop for (k=1; k<=<u>n</u>/2; k++)
 - Whatever is INSIDE that loop will be executed a LOT of times
 - So we examine the code within this loop and see how many operations we find
 - When we say operations, we're referring to mathematical operations such as +, -, *, /, etc.

Quick Example of Analyzing Code:

- So look at what's going on in the code:
 - The number of operations executed by these loops is the sum of the individual loop operations.
 - We have 2 loops,

for (k=1; k<=n/2; k++) {
 sum = sum + 5;
}
for (j = 1; j <= n*n; j++) {
 delta = delta + 1;
}</pre>

Quick Example of Analyzing Code:

- So look at what's going on in the code:
 - The number of operations executed by these loops is the sum of the individual loop operations.
 - We have 2 loops,
 - The first loop runs n/2 times
 - Each iteration of the <u>first loop</u> results in <u>one operation</u>
 - The + operation in: sum = sum + 5;
 - So there are n/2 operations in the first loop
 - The second loop runs n² times
 - Each iteration of the second loop results in one operation
 - The + operation in: delta = delta + 1;
 - So there are n² operations in the second loop.

Quick Example of Analyzing Code:

- So look at what's going on in the code:
 - The number of operations executed by these loops is the sum of the individual loop operations.
 - The first loop has n/2 operations
 - The second loop has n² operations
 - They are NOT nested loops.
 - One loop executes AFTER the other completely finishes
 - So we simply ADD their operations
 - The total number of operations would be n/2 + n²
 - In Big-O terms, we can express the number of operations as O(n²)

Brief Interlude: Human Stupidity

Algorithm Analysis

Common orders (listed from slowest to fastest growth)
Function Name

Function	Name
1	Constant
log n	Logarithmic
n	Linear
n log n	Poly-log
n^2	Quadratic
n ³	Cubic
2 ⁿ	Exponential
n!	Factorial

O(1) or "Order One": Constant time

- does not mean that it takes only one operation
- does mean that the work doesn't change as n changes
- is a notation for "<u>constant work</u>"
- An example would be finding the smallest element in a sorted array
 - There's nothing to search for here
 - The smallest element is always at the beginning of a sorted array
 - So this would take O(1) time

O(n) or "Order n": Linear time

- does not mean that it takes <u>n operations</u>
 - maybe it takes 3*n operations, or perhaps 7*n operations
- does mean that the work changes in a way that is proportional to n
- Example:
 - If the input size doubles, the running time also doubles
- is a notation for "<u>work grows at a linear rate</u>"
- You usually can't really do a lot better than this for most problems we deal with
 - After all, you need to at least examine all the data right?

O(n²) or "Order n²": Quadratic time

If input size doubles, running time increases by a factor of 4

O(n³) or "Order n³": Cubic time

If input size doubles, running time increases by a factor of 8

O(n^k): Other polynomial time

- Should really try to avoid high order polynomial running times
 - However, it is considered good from a theoretical standpoint

O(2ⁿ) or "Order 2ⁿ": Exponential time

- more <u>theoretical</u> rather than practical interest because they cannot reasonably run on typical computers for even for moderate values of n.
- Input sizes bigger than 40 or 50 become <u>unmanageable</u>
 - Even on faster computers
- **O(n!)**: even worse than exponential!
 - Input sizes bigger than 10 will take a long time

Big-O Notation

O(n logn):

- Only slightly worse than O(n) time
 - And O(n logn) will be much less than O(n²)
 - This is the running time for the better sorting algorithms we will go over (later)
- O(log n) or "Order log n": Logarithmic time
 - If input size doubles, running time increases ONLY by a constant amount
 - any algorithm that halves the data remaining to be processed on each iteration of a loop will be an O(log n) algorithm.

- Practical Problems that can be solved utilizing order notation:
 - Example:
 - You are told that algorithm A runs in O(n) time
 - You are also told the following:
 - For an input size of 10
 - The algorithm runs in <u>2 milliseconds</u>
 - As a result, you can expect that for an input size of 500, the algorithm would run in 100 milliseconds!
 - Notice the input size jumped by a multiple of 50
 - From 10 to 500
 - Therefore, given a O(n) algorithm, the <u>running time should</u> also jump by a multiple of 50, <u>which it does</u>!

- Practical Problems that can be solved utilizing order notation:
 - General process of solving these problems:
 - We know that <u>Big-O is NOT exact</u>
 - It's an <u>upper bound on the actual running time</u>
 - So when we say that an <u>algorithm runs in O(f(n)) time</u>,
 - Assume the EXACT running time is c*f(n)
 - where c is some constant
 - Using this assumption,
 - we can use the information in the problem to solve for c
 - Then we can use this c to answer the question being asked
 - Examples will clarify...

- Practical Problems that can be solved utilizing order notation:
 - Example 1: Algorithm A runs in <u>O(n²)</u> time
 - For an input size of 4, the running time is <u>10 milliseconds</u>
 - How long will it take to run on an input size of 16?
 - Let T(n) = c*n²
 - <u>T(n) refers to the running time</u> (of algorithm A) on input size n
 - Now, plug in the given data, and <u>find the value for c!</u>
 - T(4) = c*4² = 10 milliseconds
 - Therefore, **c = 10/16 milliseconds**
 - Now, answer the question by using c and solving T(16)

T(16) = c*16² = (10/16)*16² = 160 milliseconds

- Practical Problems that can be solved utilizing order notation:
 - Example 2: Algorithm A runs in <u>O(log₂n)</u> time
 - For an input size of 16, the running time is 28 milliseconds
 - How long will it take to run on an input size of 64?
 - Let T(n) = c*log₂n
 - Now, plug in the given data, and <u>find the value for c!</u>
 - $T(16) = c^* \log_2 16 = 10$ milliseconds
 - c*4 = 28 milliseconds
 - Therefore, c = 7 milliseconds
 - Now, answer the question by using c and solving T(64)
 - **T(64) = c*log₂64** = 7*log₂64 = 7*6 = 42 milliseconds

Base Conversions

WASN'T THAT **MARVELOUS!**

Algorithm Analysis

Daily Demotivator

Algorithm Analysis

Algorithm Analysis

Computer Science Department University of Central Florida

COP 3502 – Computer Science I