
Computer Science Department
University of Central Florida

Algorithm
Analysis

COP 3502 – Computer Science I

Algorithm Analysis page 2

Order Analysis

 Judging the Efficiency/Speed of an Algorithm
 Thus far, we’ve looked at a few different

algorithms:
 Max # of 1’s
 Linear Search vs Binary Search
 Sorted List Matching Problem
 and others

 But we haven’t really examined them, in detail,
regarding their efficiency or speed

 This is one of the main goals of this class!

Algorithm Analysis page 3

Order Analysis

 Judging the Efficiency/Speed of an Algorithm
 We will use Order Notation to approximate two

things about algorithms:
1) How much time they take
2) How much memory (space) they use
 Note:

 It is nearly impossible to figure out the exact amount of
time an algorithm will take

 Each algorithm gets translated into smaller and
smaller machine instructions

 Each of these instructions take various amounts of
time to execute on different computers

Algorithm Analysis page 4

Order Analysis

 Judging the Efficiency/Speed of an Algorithm
 Note:

 Also, we want to judge algorithms independent of their
implementation

 Thus, rather than figure out an algorithm’s exact running
time
 We only want an approximation (Big-O approximation)

 Assumptions: we assume that each statement and each
comparison in C takes some constant amount of time

 Also, most algorithms have some type of input
 With sorting, for example, the size of the input (typically

referred to as n) is the number of numbers to be sorted
 Time and space used by an algorithm function of the input

Algorithm Analysis page 5

Big-O Notation

 What is Big O?
 Sounds like a rapper.?.

 If it were only that simple!

 Big O comes from Big-O Notation
 In C.S., we want to know how efficient an algorithm

is…how “fast” it is
 More specifically…we want to know how the

performance of an algorithm responds to changes
in problem size

Algorithm Analysis page 6

Big-O Notation

 What is Big O?
 The goal is to provide a qualitative insight on the

of operations for a problem size of n elements.
 And this total # of operations can be described

with a mathematical expression in terms of n.
 This expression is known as Big-O

 The Big-O notation is a way of measuring the
order of magnitude of a mathematical
expression.

 O(n) means “of the order of n”

Algorithm Analysis page 7

Big-O Notation

 Consider the expression:


 How fast is this “growing”?
 There are three terms:

 the 4n2, the 3n, and the 10
 As n gets bigger, which term makes it get larger fastest?

 Let’s look at some values of n and see what happens?

1034)(2 ++= nnnf

n 4n2 3n 10
1 4 3 10
10 400 30 10
100 40,000 300 10
1000 4,000,000 3,000 10
10,000 400,000,000 30,000 10
100,000 40,000,000,000 300,000 10
1,000,000 4,000,000,000,000 3,000,000 10

Algorithm Analysis page 8

Big-O Notation

 Consider the expression:


 How fast is this “growing”?
 Which term makes it get larger fastest?

 As n gets larger and larger, the 4n2 term DOMINATES the
resulting answer

 f(1,000,000) = 4,000,003,000,010

 The idea of behind Big-O is to reduce the
expression so that it captures the qualitative
behavior in the simplest terms.

1034)(2 ++= nnnf

Algorithm Analysis page 9

Big-O Notation

 Consider the expression:
 How fast is this “growing”?

 Look at VERY large values of n
 eliminate any term whose contribution to the total ceases to be

significant as n get larger and larger
 of course, this also includes constants, as they little to no effect

with larger values of n
 Including constant factors (coefficients)

 So we ignore the constant 10
 And we can also ignore the 3n
 Finally, we can eliminate the constant factor, 4, in front of n2

 We can approximate the order of this function, f(n), as n2

 We can say, O(4n2 + 3n + 10) = O(n2)
 In conclusion, we say that f(n) takes O(n2) steps to execute

1034)(2 ++= nnnf

Algorithm Analysis page 10

Big-O Notation

 Some basic examples:
 What is the Big-O of the following functions:

 f(n) = 4n2 +3n +10
 Answer: O(n2)

 f(n) = 76,756,234n2 + 427,913n + 7
 Answer: O(n2)

 f(n) = 74n8 - 62n5 - 71562n3 + 3n2 – 5
 Answer: O(n8)

 f(n) = 42n4*(12n6 - 73n2 + 11)
 Answer: O(n10)

 f(n) = 75n*logn – 415
 Answer: O(n*logn)

Algorithm Analysis page 11

Big-O Notation

 Consider the expression:
 How fast is this “growing”?

 We can say, O(4n2 + 3n + 10) = O(n2)
 Till now, we have one function:

 f(n) = 4n2 + 3n + 10
 Let us make a second function, g(n)

 It’s just a letter right? We could have called it r(n) or x(n)
 Don’t get scared about this

 Now, let g(n) equal n2

 g(n) = n2

 So now we have two functions: f(n) and g(n)
 We said (above) that O(4n2 + 3n + 10) = O(n2)

 Similarly, we can say that the order of f(n) is O[g(n)].

1034)(2 ++= nnnf

Algorithm Analysis page 12

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 Think about the two functions we just had:

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 We agreed that O(4n2 + 3n + 10) = O(n2)
 Which means we agreed that the order of f(n) is O(g(n)

 That’s all this definition says!!!
 f(n) is big-O of g(n), if there is a c,

 (c is a constant)
 such that f(n) is not larger than c*g(n) for sufficiently

large values of n (greater than N)

Brace yourself!

Algorithm Analysis page 13

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 Think about the two functions we just had:

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 f is big-O of g, if there is a c such that f is not larger than
c*g for sufficiently large values of n (greater than N)
 So given the two functions above, does there exist some

constant, c, that would make the following statement true?
 f(n) <= c*g(n)
 4n2 + 3n + 10 <= c*n2

 If there does exist this c, then f(n) is O(g(n))
 Let’s go see if we can come up with the constant, c

Algorithm Analysis page 14

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 Clearly, c cannot be 4 or less
 Cause even if it was 4, we would have:

 4n2 + 3n + 10 <= 4n2

 This is NEVER true for any positive value of n!
 So c must be greater than 4

 Let us try with c being equal to 5
 4n2 + 3n + 10 <= 5n2

Algorithm Analysis page 15

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5

Algorithm Analysis page 16

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5
2 4(4) + 3(2) + 10 = 32 5(4) = 20

Algorithm Analysis page 17

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5
2 4(4) + 3(2) + 10 = 32 5(4) = 20
3 4(9) + 3(3) + 10 = 55 5(9) = 45

Algorithm Analysis page 18

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?

 For n = 1 through 4, this statement is NOT true

n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5
2 4(4) + 3(2) + 10 = 32 5(4) = 20
3 4(9) + 3(3) + 10 = 55 5(9) = 45
4 4(16) + 3(4) + 10 = 86 5(16) = 80

But now let’s try
larger values of n.

Algorithm Analysis page 19

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5
2 4(4) + 3(2) + 10 = 32 5(4) = 20
3 4(9) + 3(3) + 10 = 55 5(9) = 45
4 4(16) + 3(4) + 10 = 86 5(16) = 80
5 4(25) + 3(5) + 10 = 125 5(25) = 125

Algorithm Analysis page 20

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5
2 4(4) + 3(2) + 10 = 32 5(4) = 20
3 4(9) + 3(3) + 10 = 55 5(9) = 45
4 4(16) + 3(4) + 10 = 86 5(16) = 80
5 4(25) + 3(5) + 10 = 125 5(25) = 125
6 4(36) + 3(6) + 10 = 172 5(36) = 180

Algorithm Analysis page 21

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
 So when n = 5, the statement finally becomes true
 And when n > 5, it remains true!

 So our constant, 5, works for all n >= 5.

Algorithm Analysis page 22

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 So our constant, 5, works for all n >= 5.
 Therefore, f(n) is O(g(n)) per our definition!
 Why?
 Because there exists positive integers, c and N,

 Just so happens in this case that c = 5 and N = 5
 such that f(n) <= c*g(n).

Who
actually
got that?

Algorithm Analysis page 23

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 What can we take from this?

 That Big-O is hard as #$%q@$^&!!!

 No, but seriously…
 What we can gather is that:
 c*g(n) is an upper bound on the value of f(n).

 It represents the worst possible scenario of running time.
 The number of operations is, at worst, proportional to

g(n) for all large values of n.

Algorithm Analysis page 24

Big-O Notation

 Summing up the basic properties for
determining the order of a function:
1) If you’ve got multiple functions added together,

the fastest growing one determines the order
2) Multiplicative constants don’t affect the order
3) If you’ve got multiple functions multiplied

together, the overall order is their individual
orders multiplied together

Algorithm Analysis page 25

Big-O Notation

 Some basic examples:
 What is the Big-O of the following functions:

 f(n) = 4n2 +3n +10
 Answer: O(n2)

 f(n) = 76,756,234n2 + 427,913n + 7
 Answer: O(n2)

 f(n) = 74n8 - 62n5 - 71562n3 + 3n2 – 5
 Answer: O(n8)

 f(n) = 42n4*(12n6 - 73n2 + 11)
 Answer: O(n10)

 f(n) = 75n*logn – 415
 Answer: O(n*logn)

Algorithm Analysis page 26

Big-O Notation

 Quick Example of Analyzing Code:
 This is just to show you how we use Big-O

 we‘ll do more of these (a lot more) next time

 Use big-O notation to analyze the time
complexity of the following fragment of C code:

for (k=1; k<=n/2; k++) {
sum = sum + 5;

}

for (j = 1; j <= n*n; j++) {
delta = delta + 1;

}

Algorithm Analysis page 27

Big-O Notation

 Quick Example of Analyzing Code:
 So look at what’s going on in the code:

 We care about the total number of REPETITIVE
operations.
 Remember, we said we care about the running time for

LARGE values of n
 So in a for loop, with n as part of the comparison value

determining when to stop
 Whatever is INSIDE that loop will be executed a LOT of

times
 So we examine the code within this loop and see how

many operations we find
 When we say operations, we’re referring to mathematical

operations such as +, -, *, /, etc.

for (k=1; k<=n/2; k++)

Algorithm Analysis page 28

Big-O Notation

 Quick Example of Analyzing Code:
 So look at what’s going on in the code:

 The number of operations executed by these loops is
the sum of the individual loop operations.

 We have 2 loops,

for (k=1; k<=n/2; k++) {
sum = sum + 5;

}

for (j = 1; j <= n*n; j++) {
delta = delta + 1;

}

Algorithm Analysis page 29

Big-O Notation

 Quick Example of Analyzing Code:
 So look at what’s going on in the code:

 The number of operations executed by these loops is
the sum of the individual loop operations.

 We have 2 loops,
 The first loop runs n/2 times
 Each iteration of the first loop results in one operation

 The + operation in: sum = sum + 5;
 So there are n/2 operations in the first loop
 The second loop runs n2 times
 Each iteration of the second loop results in one operation

 The + operation in: delta = delta + 1;
 So there are n2 operations in the second loop.

Algorithm Analysis page 30

Big-O Notation

 Quick Example of Analyzing Code:
 So look at what’s going on in the code:

 The number of operations executed by these loops is
the sum of the individual loop operations.

 The first loop has n/2 operations
 The second loop has n2 operations
 They are NOT nested loops.

 One loop executes AFTER the other completely finishes
 So we simply ADD their operations
 The total number of operations would be n/2 + n2

 In Big-O terms, we can express the number of
operations as O(n2)

Algorithm Analysis page 31

Brief Interlude: Human Stupidity

Algorithm Analysis page 32

Big-O Notation

 Common orders (listed from slowest to fastest
growth) Function Name

1 Constant

log n Logarithmic

n Linear

n log n Poly-log

n2 Quadratic

n3 Cubic

2n Exponential

n! Factorial

Algorithm Analysis page 33

Big-O Notation

 O(1) or “Order One”: Constant time
 does not mean that it takes only one operation
 does mean that the work doesn’t change as n

changes
 is a notation for “constant work”
 An example would be finding the smallest

element in a sorted array
 There’s nothing to search for here
 The smallest element is always at the beginning of a

sorted array
 So this would take O(1) time

Algorithm Analysis page 34

Big-O Notation

 O(n) or “Order n”: Linear time
 does not mean that it takes n operations

 maybe it takes 3*n operations, or perhaps 7*n operations

 does mean that the work changes in a way that
is proportional to n

 Example:
 If the input size doubles, the running time also doubles

 is a notation for “work grows at a linear rate”
 You usually can’t really do a lot better than this for

most problems we deal with
 After all, you need to at least examine all the data right?

Algorithm Analysis page 35

Big-O Notation

 O(n2) or “Order n2 ”: Quadratic time
 If input size doubles, running time increases by

a factor of 4
 O(n3) or “Order n3 ”: Cubic time

 If input size doubles, running time increases by
a factor of 8

 O(nk): Other polynomial time
 Should really try to avoid high order polynomial

running times
 However, it is considered good from a theoretical

standpoint

Algorithm Analysis page 36

Big-O Notation

 O(2n) or “Order 2n ”: Exponential time
 more theoretical rather than practical interest

because they cannot reasonably run on typical
computers for even for moderate values of n.

 Input sizes bigger than 40 or 50 become
unmanageable
 Even on faster computers

 O(n!): even worse than exponential!
 Input sizes bigger than 10 will take a long time

Algorithm Analysis page 37

Big-O Notation

 O(n logn):
 Only slightly worse than O(n) time

 And O(n logn) will be much less than O(n2)
 This is the running time for the better sorting

algorithms we will go over (later)

 O(log n) or “Order log n”: Logarithmic time
 If input size doubles, running time increases

ONLY by a constant amount
 any algorithm that halves the data remaining

to be processed on each iteration of a loop will
be an O(log n) algorithm.

Algorithm Analysis page 38

Big-O Notation – Practical Problems

 Practical Problems that can be solved utilizing
order notation:
 Example:

 You are told that algorithm A runs in O(n) time
 You are also told the following:

 For an input size of 10
 The algorithm runs in 2 milliseconds

 As a result, you can expect that for an input size of 500,
the algorithm would run in 100 milliseconds!
 Notice the input size jumped by a multiple of 50

 From 10 to 500
 Therefore, given a O(n) algorithm, the running time should

also jump by a multiple of 50, which it does!

Algorithm Analysis page 39

Big-O Notation – Practical Problems

 Practical Problems that can be solved utilizing
order notation:
 General process of solving these problems:

 We know that Big-O is NOT exact
 It’s an upper bound on the actual running time

 So when we say that an algorithm runs in O(f(n)) time,
 Assume the EXACT running time is c*f(n)

 where c is some constant
 Using this assumption,

 we can use the information in the problem to solve for c
 Then we can use this c to answer the question being asked

 Examples will clarify…

Algorithm Analysis page 40

Big-O Notation – Practical Problems

 Practical Problems that can be solved utilizing
order notation:
 Example 1: Algorithm A runs in O(n2) time

 For an input size of 4, the running time is 10 milliseconds
 How long will it take to run on an input size of 16?
 Let T(n) = c*n2

 T(n) refers to the running time (of algorithm A) on input size n
 Now, plug in the given data, and find the value for c!

 T(4) = c*42

 Therefore, c = 10/16 milliseconds
 Now, answer the question by using c and solving T(16)
 T(16) = c*162 = (10/16)*162 = 160 milliseconds

= 10 milliseconds

Algorithm Analysis page 41

Big-O Notation – Practical Problems

 Practical Problems that can be solved utilizing
order notation:
 Example 2: Algorithm A runs in O(log2n) time

 For an input size of 16, the running time is 28 milliseconds
 How long will it take to run on an input size of 64?
 Let T(n) = c*log2n

 Now, plug in the given data, and find the value for c!
 T(16) = c*log216

 c*4 = 28 milliseconds
 Therefore, c = 7 milliseconds

 Now, answer the question by using c and solving T(64)
 T(64) = c*log264

= 10 milliseconds

= 7*log264 = 7*6 = 42 milliseconds

Algorithm Analysis page 42

Base Conversions

WASN’T
THAT

MARVELOUS!

Algorithm Analysis page 43

Daily Demotivator

Computer Science Department
University of Central Florida

Algorithm
Analysis

COP 3502 – Computer Science I

	Algorithm Analysis
	Order Analysis
	Order Analysis
	Order Analysis
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Brief Interlude: Human Stupidity
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation – Practical Problems
	Big-O Notation – Practical Problems
	Big-O Notation – Practical Problems
	Big-O Notation – Practical Problems
	Base Conversions
	Daily Demotivator
	Algorithm Analysis

