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Order Analysis

 Judging the Efficiency/Speed of an Algorithm
 Thus far, we’ve looked at a few different 

algorithms:
 Max # of 1’s
 Linear Search vs Binary Search
 Sorted List Matching Problem
 and others

 But we haven’t really examined them, in detail, 
regarding their efficiency or speed

 This is one of the main goals of this class!
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Order Analysis

 Judging the Efficiency/Speed of an Algorithm
 We will use Order Notation to approximate two 

things about algorithms:
1) How much time they take
2) How much memory (space) they use
 Note:

 It is nearly impossible to figure out the exact amount of 
time an algorithm will take

 Each algorithm gets translated into smaller and 
smaller machine instructions

 Each of these instructions take various amounts of 
time to execute on different computers
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Order Analysis

 Judging the Efficiency/Speed of an Algorithm
 Note:

 Also, we want to judge algorithms independent of their 
implementation

 Thus, rather than figure out an algorithm’s exact running 
time
 We only want an approximation (Big-O approximation)

 Assumptions:  we assume that each statement and each 
comparison in C takes some constant amount of time

 Also, most algorithms have some type of input
 With sorting, for example, the size of the input (typically 

referred to as n) is the number of numbers to be sorted
 Time and space used by an algorithm function of the input
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Big-O Notation

 What is Big O?
 Sounds like a rapper.?.

 If it were only that simple!

 Big O comes from Big-O Notation
 In C.S., we want to know how efficient an algorithm 

is…how “fast” it is
 More specifically…we want to know how the 

performance of an algorithm responds to changes 
in problem size
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Big-O Notation

 What is Big O?
 The goal is to provide a qualitative insight on the 

# of operations for a problem size of n elements.
 And this total # of operations can be described 

with a mathematical expression in terms of n.
 This expression is known as Big-O

 The Big-O notation is a way of measuring the 
order of magnitude of a mathematical 
expression.

 O(n) means “of the order of n”
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Big-O Notation

 Consider the expression:


 How fast is this “growing”?
 There are three terms:

 the 4n2, the 3n, and the 10
 As n gets bigger, which term makes it get larger fastest?

 Let’s look at some values of n and see what happens?

1034)( 2 ++= nnnf

n 4n2 3n 10
1 4 3 10
10 400 30 10
100 40,000 300 10
1000 4,000,000 3,000 10
10,000 400,000,000 30,000 10
100,000 40,000,000,000 300,000 10
1,000,000 4,000,000,000,000 3,000,000 10
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Big-O Notation

 Consider the expression:


 How fast is this “growing”?
 Which term makes it get larger fastest?

 As n gets larger and larger, the 4n2 term DOMINATES the 
resulting answer

 f(1,000,000) = 4,000,003,000,010

 The idea of behind Big-O is to reduce the 
expression so that it captures the qualitative
behavior in the simplest terms.

1034)( 2 ++= nnnf
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Big-O Notation

 Consider the expression:
 How fast is this “growing”?

 Look at VERY large values of n
 eliminate any term whose contribution to the total ceases to be 

significant as n get larger and larger
 of course, this also includes constants, as they little to no effect 

with larger values of n
 Including constant factors (coefficients)

 So we ignore the constant 10
 And we can also ignore the 3n
 Finally, we can eliminate the constant factor, 4, in front of n2

 We can approximate the order of this function, f(n), as n2

 We can say, O(4n2 + 3n + 10) = O(n2)
 In conclusion, we say that f(n) takes O(n2) steps to execute

1034)( 2 ++= nnnf
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Big-O Notation

 Some basic examples:
 What is the Big-O of the following functions:

 f(n) = 4n2 +3n +10
 Answer:  O(n2)

 f(n) = 76,756,234n2 + 427,913n + 7
 Answer:  O(n2)

 f(n) = 74n8 - 62n5 - 71562n3 + 3n2 – 5
 Answer:  O(n8)

 f(n) = 42n4*(12n6 - 73n2 + 11)
 Answer:  O(n10)

 f(n) = 75n*logn – 415
 Answer:  O(n*logn)
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Big-O Notation

 Consider the expression:
 How fast is this “growing”?

 We can say, O(4n2 + 3n + 10) = O(n2)
 Till now, we have one function:

 f(n) = 4n2 + 3n + 10
 Let us make a second function, g(n)

 It’s just a letter right?  We could have called it r(n) or x(n)
 Don’t get scared about this

 Now, let g(n) equal n2

 g(n) = n2

 So now we have two functions:  f(n) and g(n)
 We said (above) that O(4n2 + 3n + 10) = O(n2)

 Similarly, we can say that the order of f(n) is O[g(n)].

1034)( 2 ++= nnnf
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Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c 

and N, such that f(n) <= c*g(n) for all n>=N.
 Think about the two functions we just had:

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 We agreed that O(4n2 + 3n + 10) = O(n2)
 Which means we agreed that the order of f(n) is O(g(n)

 That’s all this definition says!!!
 f(n) is big-O of g(n), if there is a c,

 (c is a constant)
 such that f(n) is not larger than c*g(n) for sufficiently 

large values of n (greater than N)

Brace yourself!
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Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c 

and N, such that f(n) <= c*g(n) for all n>=N.
 Think about the two functions we just had:

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 f is big-O of g, if there is a c such that f is not larger than 
c*g for sufficiently large values of n (greater than N)
 So given the two functions above, does there exist some 

constant, c, that would make the following statement true?
 f(n) <= c*g(n)
 4n2 + 3n + 10 <= c*n2

 If there does exist this c, then f(n) is O(g(n))
 Let’s go see if we can come up with the constant, c
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Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c 

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM:  Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 Clearly, c cannot be 4 or less
 Cause even if it was 4, we would have:

 4n2 + 3n + 10 <= 4n2

 This is NEVER true for any positive value of n!
 So c must be greater than 4

 Let us try with c being equal to 5
 4n2 + 3n + 10 <= 5n2
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Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c 

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM:  Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5
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Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c 

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM:  Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5
2 4(4) + 3(2) + 10 = 32 5(4) = 20
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Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c 

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM:  Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5
2 4(4) + 3(2) + 10 = 32 5(4) = 20
3 4(9) + 3(3) + 10 = 55 5(9) = 45
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Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c 

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM:  Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?

 For n = 1 through 4, this statement is NOT true

n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5
2 4(4) + 3(2) + 10 = 32 5(4) = 20
3 4(9) + 3(3) + 10 = 55 5(9) = 45
4 4(16) + 3(4) + 10 = 86 5(16) = 80

But now let’s try 
larger values of n.
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Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c 

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM:  Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5
2 4(4) + 3(2) + 10 = 32 5(4) = 20
3 4(9) + 3(3) + 10 = 55 5(9) = 45
4 4(16) + 3(4) + 10 = 86 5(16) = 80
5 4(25) + 3(5) + 10 = 125 5(25) = 125
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Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c 

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM:  Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5
2 4(4) + 3(2) + 10 = 32 5(4) = 20
3 4(9) + 3(3) + 10 = 55 5(9) = 45
4 4(16) + 3(4) + 10 = 86 5(16) = 80
5 4(25) + 3(5) + 10 = 125 5(25) = 125
6 4(36) + 3(6) + 10 = 172 5(36) = 180
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Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c 

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM:  Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
 So when n = 5, the statement finally becomes true
 And when n > 5, it remains true!

 So our constant, 5, works for all n >= 5.
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Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c 

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM:  Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 So our constant, 5, works for all n >= 5.
 Therefore, f(n) is O(g(n)) per our definition!
 Why?
 Because there exists positive integers, c and N,

 Just so happens in this case that c = 5 and N = 5
 such that f(n) <= c*g(n).

Who 
actually
got that?
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Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c 

and N, such that f(n) <= c*g(n) for all n>=N.
 What can we take from this?

 That Big-O is hard as #$%q@$^&!!!

 No, but seriously…
 What we can gather is that:
 c*g(n) is an upper bound on the value of f(n).

 It represents the worst possible scenario of running time.
 The number of operations is, at worst, proportional to 

g(n) for all large values of n.
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Big-O Notation

 Summing up the basic properties for 
determining the order of a function:
1) If you’ve got multiple functions added together, 

the fastest growing one determines the order
2) Multiplicative constants don’t affect the order
3) If you’ve got multiple functions multiplied 

together, the overall order is their individual 
orders multiplied together
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Big-O Notation

 Some basic examples:
 What is the Big-O of the following functions:

 f(n) = 4n2 +3n +10
 Answer:  O(n2)

 f(n) = 76,756,234n2 + 427,913n + 7
 Answer:  O(n2)

 f(n) = 74n8 - 62n5 - 71562n3 + 3n2 – 5
 Answer:  O(n8)

 f(n) = 42n4*(12n6 - 73n2 + 11)
 Answer:  O(n10)

 f(n) = 75n*logn – 415
 Answer:  O(n*logn)
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Big-O Notation

 Quick Example of Analyzing Code:
 This is just to show you how we use Big-O

 we‘ll do more of these (a lot more) next time

 Use big-O notation to analyze the time 
complexity of the following fragment of C code:

for (k=1; k<=n/2; k++) {
sum = sum + 5;

}

for (j = 1; j <= n*n; j++) {
delta = delta + 1;

}
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Big-O Notation

 Quick Example of Analyzing Code:
 So look at what’s going on in the code:

 We care about the total number of REPETITIVE 
operations.
 Remember, we said we care about the running time for 

LARGE values of n
 So in a for loop, with n as part of the comparison value 

determining when to stop
 Whatever is INSIDE that loop will be executed a LOT of 

times
 So we examine the code within this loop and see how 

many operations we find
 When we say operations, we’re referring to mathematical 

operations such as +, -, *, /, etc.

for (k=1; k<=n/2; k++)
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Big-O Notation

 Quick Example of Analyzing Code:
 So look at what’s going on in the code:

 The number of operations executed by these loops is 
the sum of the individual loop operations.

 We have 2 loops,

for (k=1; k<=n/2; k++) {
sum = sum + 5;

}

for (j = 1; j <= n*n; j++) {
delta = delta + 1;

}
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Big-O Notation

 Quick Example of Analyzing Code:
 So look at what’s going on in the code:

 The number of operations executed by these loops is 
the sum of the individual loop operations.

 We have 2 loops,
 The first loop runs n/2 times
 Each iteration of the first loop results in one operation

 The + operation in:  sum = sum + 5;
 So there are n/2 operations in the first loop
 The second loop runs n2 times
 Each iteration of the second loop results in one operation

 The + operation in:  delta = delta + 1;
 So there are n2 operations in the second loop.
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Big-O Notation

 Quick Example of Analyzing Code:
 So look at what’s going on in the code:

 The number of operations executed by these loops is 
the sum of the individual loop operations.

 The first loop has n/2 operations
 The second loop has n2 operations
 They are NOT nested loops.

 One loop executes AFTER the other completely finishes
 So we simply ADD their operations
 The total number of operations would be n/2 + n2

 In Big-O terms, we can express the number of 
operations as O(n2)
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Brief Interlude:  Human Stupidity
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Big-O Notation

 Common orders (listed from slowest to fastest 
growth) Function Name

1 Constant

log n Logarithmic

n Linear

n log n Poly-log

n2 Quadratic

n3 Cubic

2n Exponential

n! Factorial
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Big-O Notation

 O(1) or “Order One”:  Constant time
 does not mean that it takes only one operation
 does mean that the work doesn’t change as n 

changes
 is a notation for “constant work”
 An example would be finding the smallest 

element in a sorted array
 There’s nothing to search for here
 The smallest element is always at the beginning of a 

sorted array
 So this would take O(1) time
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Big-O Notation

 O(n) or “Order n”: Linear time
 does not mean that it takes n operations

 maybe it takes 3*n operations, or perhaps 7*n operations

 does mean that the work changes in a way that 
is proportional to n

 Example:
 If the input size doubles, the running time also doubles

 is a notation for “work grows at a linear rate”
 You usually can’t really do a lot better than this for 

most problems we deal with
 After all, you need to at least examine all the data right?
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Big-O Notation

 O(n2) or “Order n2 ”: Quadratic time
 If input size doubles, running time increases by 

a factor of 4
 O(n3) or “Order n3 ”: Cubic time

 If input size doubles, running time increases by 
a factor of 8

 O(nk):  Other polynomial time
 Should really try to avoid high order polynomial 

running times
 However, it is considered good from a theoretical 

standpoint
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Big-O Notation

 O(2n) or “Order 2n ”: Exponential time
 more theoretical rather than practical interest 

because they cannot reasonably run on typical 
computers for even for moderate values of n.

 Input sizes bigger than 40 or 50 become 
unmanageable
 Even on faster computers

 O(n!):  even worse than exponential!
 Input sizes bigger than 10 will take a long time
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Big-O Notation

 O(n logn):
 Only slightly worse than O(n) time

 And O(n logn) will be much less than O(n2)
 This is the running time for the better sorting 

algorithms we will go over (later)

 O(log n) or “Order log n”: Logarithmic time
 If input size doubles, running time increases 

ONLY by a constant amount
 any algorithm that halves the data remaining 

to be processed on each iteration of a loop will 
be an O(log n) algorithm.
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Big-O Notation – Practical Problems

 Practical Problems that can be solved utilizing 
order notation:
 Example:

 You are told that algorithm A runs in O(n) time
 You are also told the following:

 For an input size of 10
 The algorithm runs in 2 milliseconds

 As a result, you can expect that for an input size of 500, 
the algorithm would run in 100 milliseconds!
 Notice the input size jumped by a multiple of 50

 From 10 to 500
 Therefore, given a O(n) algorithm, the running time should 

also jump by a multiple of 50, which it does!
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Big-O Notation – Practical Problems

 Practical Problems that can be solved utilizing 
order notation:
 General process of solving these problems:

 We know that Big-O is NOT exact
 It’s an upper bound on the actual running time

 So when we say that an algorithm runs in O(f(n)) time,
 Assume the EXACT running time is c*f(n)

 where c is some constant
 Using this assumption,

 we can use the information in the problem to solve for c
 Then we can use this c to answer the question being asked

 Examples will clarify…
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Big-O Notation – Practical Problems

 Practical Problems that can be solved utilizing 
order notation:
 Example 1:  Algorithm A runs in O(n2) time

 For an input size of 4, the running time is 10 milliseconds
 How long will it take to run on an input size of 16?
 Let T(n) = c*n2

 T(n) refers to the running time (of algorithm A) on input size n
 Now, plug in the given data, and find the value for c!

 T(4) = c*42

 Therefore, c = 10/16 milliseconds
 Now, answer the question by using c and solving T(16)
 T(16) = c*162 = (10/16)*162 = 160 milliseconds

= 10 milliseconds
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Big-O Notation – Practical Problems

 Practical Problems that can be solved utilizing 
order notation:
 Example 2:  Algorithm A runs in O(log2n) time

 For an input size of 16, the running time is 28 milliseconds
 How long will it take to run on an input size of 64?
 Let T(n) = c*log2n

 Now, plug in the given data, and find the value for c!
 T(16) = c*log216

 c*4 = 28 milliseconds
 Therefore, c = 7 milliseconds

 Now, answer the question by using c and solving T(64)
 T(64) = c*log264

= 10 milliseconds

= 7*log264 = 7*6 = 42 milliseconds
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Base Conversions

WASN’T
THAT

MARVELOUS!
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Daily Demotivator



Computer Science Department
University of Central Florida

Algorithm 
Analysis

COP 3502 – Computer Science I


	Algorithm Analysis
	Order Analysis
	Order Analysis
	Order Analysis
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Brief Interlude:  Human Stupidity
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation – Practical Problems
	Big-O Notation – Practical Problems
	Big-O Notation – Practical Problems
	Big-O Notation – Practical Problems
	Base Conversions
	Daily Demotivator
	Algorithm Analysis

